

Exercise 2.2

Zero.

Exercise 2.3

If too much money is inserted the machine takes it all - no refund.
If there isn't enough money inserted, it still prints out the ticket.

Exercise 2.5

It looks almost completely the same. Only the price on the ticket is different.

Exercise 2.6

The outer part of the student class:

public class Student
{
}

The outer part of the LabClass class:

public class LabClass
{
}

Exercise 2.7

Yes, the order of public and class matters.

Exercise 2.8

It is possible to leave out the word public.

Exercise 2.9

Fields:
price
balance
total

Constructors:
TicketMachine

Methods:
getPrice
getBalance
insertMoney
printTicket

Exercise 2.10

It does not have any return type. The name of the constructor is the same as the name
of the class.

Exercise 2.11

int
Student
Server

Exercise 2.12

alive
tutor
game

Exercise 2.13

The exact order matters.

Exercise 2.14

Yes, it always necessary to have a semicolon after a field declaration.

Exercise 2.15

private int status;

Exercise 2.16

It belongs to the class Student.

Exercise 2.17

It has two parameters. One is of type String and the other of type double.

Exercise 2.18

It would be reasonable to expect the types to be the same as the two parameters
(String and double).

Can't really assume anything about the names, but probably something like title and
price.

Exercise 2.19

name = petsName;

Exercise 2.20

The price variable is declared in the constructor (it has an int in front). This means

that we assign the ticketCost to the local variable price instead of the field price. This
is a common error.

Exercise 2.21

Aside from their names, the only difference is that getPrice() returns the value of the
price field whereas getBalance() returns the value of the balance field.

Exercise 2.22

How much money have I inserted into the machine?

Exercise 2.23

No.

Exercise 2.24
public int getTotal()
{
 return total;
}

Exercise 2.25

Missing return statement.

Exercise 2.26

The signature for getPrice() has an int as return type.
The signature for printTicket() has void as return type.

Exercise 2.27

No.
Because they don't need to return anything.
Yes. Both headers have void as return types.

Exercise 2.29

It has a return type (void) and constructors do not have return types.

Exercise 2.30

price = ticketPrice;

Exercise 2.31

score = score + points;

Exercise 2.32

price = price - amount;

Exercise 2.33
public void prompt()
{
 System.out.println("Please insert the correct amount of money.");
}

Exercise 2.34
public void showPrice()
{
 System.out.println("The price of a ticket is " + price + "
cents");
}

Exercise 2.35

They display different prices. This is because each ticket machine object has its own
price.
The price that was set in one ticket machine does not affect the other ticket machines
price.
The unique value of each ticket machine's price field is substituted into the println
statement when
the method is called.

Exercise 2.36

Instead of printing out the actual price of the ticket, it displays the word "price".

Exercise 2.37

Prints out the exact same string as in exercise 2.36

Exercise 2.38

No, because neither uses the value of the price field in the println statement.

Exercise 2.39
public TicketMachine()
{
 price = 1000;
 balance = 0;
 total = 0;
}

When constructing a TicketMaching object you will not be prompted for a parameter
value.
The tickets always have a price of 1000 cents.

Exercise 2.40
public void empty()
{
 total = 0;
}
It needs no parameters.
It is a mutator.

Exercise 2.41
public void setPrice(int newPrice)
{
 price = newPrice;
}
It is a mutator.

Exercise 2.42
public TicketMachine()
{
 price = 1000;
 balance = 0;
 total = 0;
}

public TicketMachine(int ticketCost)
{
 price = ticketCost;
 balance = 0;
 total = 0;
}

Exercise 2.43

The balance does not change when an error message is printed.
Inserting zero results in an error message.

Exercise 2.44

It does not print an error message when zero is inserted.
It does not change the observable behavior of the method.

Exercise 2.45

The field is: isVisible.
It determines whether the circle was visible or not.
Yes. As circle is either visible or not, only two states (values) are needed.

Exercise 2.46

In the printTicket method of Code 2.8 the total is increased with the price of the
ticket, and not the balance.
The balance is then decreased with the price.

Exercise 2.47

It could never become negative. The value in balance is checked in printTicket to
ensure that it is always at least as large as price, so when price is subtracted balance
cannot become negative.

Exercise 2.49
saving = price * discount;

Exercise 2.50
mean = total / count;

Exercise 2.51
if(price > budget) {
 System.out.println("Too expensive.");
}
else {
 System.out.println("Just right.");
}

Exercise 2.52
if(price > budget) {
 System.out.println("Too expensive. Your budget is only: " +
budget);
}
else {
 System.out.println("Just right.");
}

Exercise 2.53

Because balance is set to zero and then this value is returned. The method will always
return zero. It can be tested by inserting an amount, and then calling refundBalance().
The original would then return the amount inserted, but the new method returns 0.

Exercise 2.54

An error is printed: unreachable statement.

A return statement ends (exits) the method. Code after a return statement can
therefore never be executed.

Exercise 2.55
public int emptyMachine()
{
 int oldTotal = total;
 total = 0;
 return oldTotal;
}

Exercise 2.56

It is both an accessor and a mutator.

Exercise 2.57
public void printTicket()
{
 int amountLeftToPay = price - balance;

 if(amountLeftToPay <= 0) {
 // Simulate the printing of a ticket.
 System.out.println("##################");
 System.out.println("# The BlueJ Line");
 System.out.println("# Ticket");
 System.out.println("# " + price + " cents.");
 System.out.println("##################");
 System.out.println();
 // Update the total collected with the price.
 total += price;

 // Reduce the balance by the prince.
 balance -= price;
 }
 else {
 System.out.println("You must insert at least: " +
 amountLeftToPay + " more cents.");
 }
}

Exercise 2.58

You would need fields to store the prices of each of the tickets that the machine can
issue.

You would need a method to select which type of ticket you would want.

It will not be necesary to modify many of the existing methods, if the price field is
updated each time you select a new ticket type. You would probably need to modify
the constructor, to allow several ticket prices.

Exercise 2.59

Name: getCode
Return type: String

Exercise 2.60

Name: setCredits
Parameter name: creditValue
Parameter type: int

Exercise 2.61

public class Person
{
}

Exercise 2.62

private String name;
private int age;
private String code;
private int credits;

Exercise 2.63

public Module(String moduleCode)
{
 code = moduleCode;
}

Exercise 2.64

public Person(String myName, int myAge)
{

 name = myName;
 age = myAge;
}

Exercise 2.65

The return type should not be void.

public int getAge()
{
 return age;
}

Exercise 2.66

public String getName()
{
 return name;
}

Exercise 2.67

public void setAge(int newAge)
{
 age = newAge;
}

Exercise 2.68

public void printDetails()
{
 System.out.println("The name of this person is " + name);
}

Exercise 2.69

student1 : Student
name: Benjamin Johnson
id: 738321
credits: 0

Exercise 2.70

"Henr557"

Exercise 2.71

It opens the editor with the source code for the Student class. It displays a message:
StringIndexOutOfBoundsException
This happens because the method getLoginName expects the name to be at least 4
characters long and "djb" is only 3 characters.

Exercise 2.72
public Student(String fullName, String studentID)
{

 if(fullName.length() < 4) {
 System.out.println("Error! The name should be at least 4
characters long");
 }
 if(studentID.length() < 3) {
 System.out.println("Error! The studentID should be at least 3
characters long");
 }
 name = fullName;
 id = studentID;
 credits = 0;
}

Exercise 2.73
public String getLoginName()
{
 String loginNamePart;
 if(name.length() < 4) {
 loginNamePart = name;
 }
 else {
 loginNamePart = name.substring(0,4);
 }

 String loginIdPart;
 if(id.length() < 3) {
 loginIdPart = id;
 }
 else {
 loginIdPart = id.substring(0,3);
 }

 return loginNamePart + loginIdPart ;
}

Exercise 2.74
102
"catfish"
"cat9"
"12cat"
"cat39"
"f"
StringIndexOutOfBoundsException

Exercise 2.75
/**
 * Returns the author of this book.
 */
public String getAuthor()
{
 return author;
}

/**
 * Returns the title of this book.
 */
public String getTitle()

{
 return title;
}

Exercise 2.76
/**
 * Prints the name of the author in the terminal window.
 */
public void printAuthor()
{
 System.out.println("Author: " + author);
}

/**
 * Prints the title of the book in the terminal window.
 */
public void printTitle()
{
 System.out.println("Title: " + title);
}

Exercise 2.77

Delete the constructor and insert this:

private int pages;

/**
 * Set the author and title fields when this object
 * is constructed.
 */
public Book(String bookAuthor, String bookTitle, int bookPages)
{
 author = bookAuthor;
 title = bookTitle;
 pages = bookPages;
}

/**
 * Returns the number of pages in this book.
 */
public int getPages()
{
 return pages;
}

Exercise 2.78
public void printDetails()
{
 System.out.print ("Title: " + title + ", ");
 System.out.print("Author: " + author + ", ");
 System.out.println("Pages: " + pages);
}

Exercise 2.79

Delete the constructor and insert:

private String refNumber;

/**
 * Set the author and title fields when this object
 * is constructed.
 */
public Book(String bookAuthor, String bookTitle, int bookPages)
{
 author = bookAuthor;
 title = bookTitle;
 pages = bookPages;
 refNumber = "";
}

/**
 * Sets the reference number for this book
 */
public void setRefNumber(String ref)
{
 refNumber = ref;
}

/**
 * Gets the reference number for this book
 */
public String getRefNumber()
{
 return refNumber;
}

Exercise 2.80

public void printDetails()
{
 System.out.println("Title: " + title);
 System.out.println("Author: " + author);
 System.out.println("Pages: " + pages);

 String refNumberString;
 if(refNumber.length() > 0) {
 refNumberString = refNumber;
 }
 else {
 refNumberString = "ZZZ";
 }
 System.out.println("Reference number: " + refNumberString);
}

Exercise 2.81

public void setRefNumber(String ref)
{
 if(ref.length() >= 3) {
 refNumber = ref;
 }
 else {
 System.out.println("Error! The reference number must be at
least 3 characters long.");
 }
}

Exercise 2.82

Add the field:
private int borrowed;

Add the methods:

/**
 * Borrows the book. Increments the number of times the book has been
borrowed.
 */
public void borrow()
{
 borrowed++;
}

/**
 * Gets the number of times the book has been borrowed.
 */
public int getBorrowed()
{
 return borrowed;
}

Add this line to printDetails method:
System.out.println("Borrowed: " + borrowed);

Exercise 2.83

public class Heater
{
 private int temperature;

 /**
 * Creates a new Heater with an initial temperature of 15.
 */
 public Heater()
 {
 temperature = 15;
 }

 /**
 * Increases the temperature by 5 degrees
 */
 public void warmer()
 {
 temperature += 5;
 }

 /**
 * Decreases the temperature by 5 degrees
 */
 public void cooler()
 {
 temperature -= 5;
 }

 /**

 * Gets the current temperature of the heater
 */
 public int getTemperature()
 {
 return temperature;
 }
}

Exercise 2.84

public class Heater
{
 private int temperature;
 private int min;
 private int max;
 private int increment;

 /**
 * Creates a new Heater with an initial temperature of 15.
 */
 public Heater(int minimum, int maximum)
 {
 min = minimum;
 max = maximum;
 temperature = 15;
 increment = 5;
 }

 /**
 * Increases the temperature
 */
 public void warmer()
 {
 int newTemperature = temperature + increment;
 if(newTemperature <= max) {
 temperature = newTemperature;
 }
 }

 /**
 * Decreases the temperature
 */
 public void cooler()
 {
 int newTemperature = temperature - increment;
 if(newTemperature >= min) {
 temperature = newTemperature;
 }
 }

 /**
 * Sets the increment, which determines how much the two methods
 * warmer() and cooler() changes the temperature.
 */
 public void setIncrement(int inc)
 {
 if(inc >= 0) {
 increment = inc;
 }
 }

 /**
 * Gets the current temperature of the heater
 */
 public int getTemperature()
 {
 return temperature;
 }
}

If the setIncrement method does not check for negative values, and a negative value is
passed, then the program will not work as expected. The minimum and maximum
values can be exceeded.

