\qquad

In grade 9 you studied Linear Relations and now you will study Quadratic Relations. From the work that we have already done with quadratics, compare and contrast the two relationships.

Linear Relations

Equation:

Ex:

Properties:

Quadratic Relations

Equation:

Ex:

Properties:

Note: The highest exponent in a one-variable algebraic expression is called the degree.

What is the easiest way to graph something? Make a table of values (tov for short!)
Recall: To create a table of values (or TOV).

1. Pick a value for x.
2. Substitute the x-value into the equation.
3. Solve for y.
4. Repeat for several other values of x.
5. Plot each point (x, y) on the $x-y$ plane.

Ex.: Create a TOV for $y=2 x+1$
' Δ ' (delta) means "change in" or "difference". Δy is the change in y, or the first difference.

$\boldsymbol{x} \boldsymbol{x}$	\boldsymbol{y}	$\Delta y=y_{2}-y_{1}$
-2		
-1		
0		
1		
2		

In a linear relationship, the first differences are \qquad .

Now let's look at quadratics!
Ex.: Create a TOV for $y=x^{2}$

\boldsymbol{x}	\boldsymbol{y}	$\Delta y=y,-y_{1}$	
-2			
-1			
0			
1			
2			

$\Delta^{2} y$ is the change in Δy, or change in $1^{\text {st }}$ differences.
$\Delta^{2} y$ is the second difference.

In a quadratic relationship, first differences are \qquad
and second differences are \qquad

Use your table of values to graph $y=x^{2}$

This shape is called a \qquad

Ex.: Create a TOV for $y=-x^{2}+2 x+3$

\boldsymbol{x}	\boldsymbol{y}	$\Delta y=y_{2}-y_{1}$				$\Delta^{2} v=\Delta v_{2}-\Delta v_{1}$
-2						
-1						
0						
1						
2						

In a quadratic relationship,
first differences are \qquad
and second differences are \qquad

Ex.: Create a TOV for $y=2(x-1)(x+1)$

\boldsymbol{x}	\boldsymbol{y}		$\Delta y=y_{2}-y_{1}$
			$\Delta^{2} v=\Delta v,-\Delta v$,
-2			
-1			
0			
1			
2			

In a quadratic relationship,
first differences are \qquad
and second differences are \qquad

Use your table of values to graph
$y=-x^{2}+2 x+3$

Use your table of values to graph $y=2(x-1)(x+1)$

Ex.: Create a TOV for $y=-0.4(x-3)(x+2) \quad$ Use your table of values to graph

$$
y=-0.4(x-3)(x+2)
$$

\boldsymbol{x}	\boldsymbol{y}		
-2		$\Delta y=y_{2}-y_{l}$	
-1			$\Delta^{2} v=\Delta v_{0}-\Delta v_{1}$
0			
1			
2			

In a quadratic relationship,
first differences are \qquad
and second differences are \qquad

Can you predict from the equation that the parabola is opening up? If yes, how?

Can you predict from the equation that the parabola is opening down? \qquad If yes, how?

Can you predict from the equation the value of the second differences? \qquad If yes, how?

Assigned Work:
p. 137 \# 1, 2, 3, 4, 5ab, 6, 7

