MPM 2D - Unit 4

Data		
Date:		

L1 (3.1) Introduction to Quadratic Relations

In grade 9 you studied Linear Relations and now you will study Quadratic Relations. From the work that we have already done with quadratics, compare and contrast the two relationships.

LINEAR RELATIONS	QUADRATIC RELATIONS
Equation:	Equation:
Ex:	Ex:
LA.	LA.
Properties:	Properties:

Note: The highest exponent in a one-variable algebraic expression is called the degree.

What is the easiest way to graph something? Make a table of values (tov for short!)

Recall: To create a <u>table of values</u> (or TOV).

- 1. Pick a value for x.
- 2. Substitute the *x*-value into the equation.
- 3. Solve for y.
- 4. Repeat for several other values of x.
- 5. Plot each point (x, y) on the x-y plane.

Ex.: Create a TOV for y = 2x + 1

 $\begin{array}{c|cccc}
x & y & \\
 & -2 & \\
 & -1 & \\
 & 0 & \\
 & 1 & \\
 & 2 & \\
\end{array}$

' Δ ' (delta) means "change in" or "difference". Δ y is the change in y, or the <u>first difference</u>.

In a linear relationship, the first differences are _____.

Now let's look at quadratics!

Ex.: Create a TOV for $y = x^2$

x	у	4]
-2		$\Delta y = y_2 - y_1$	$\Delta^2 v = \Delta v_2 - \Delta v_3$
-1			
0			
1			
2			

 Δ^2 y is the change in Δ y, or change in 1st differences.

 Δ^2 y is the <u>second difference</u>.

In a quadratic relationship, first differences are _____ and second differences are _____.

Use your table of values to graph $y = x^2$

This shape is called a _ _ _ _ _

Ex.: Create a TOV for $y = -x^2 + 2x + 3$

x	у	4	
-2		$\Delta y = y_2 - y_1$	$\Delta^2 v = \Delta v_2 - \Delta v_3$
-1			
0			
1			
2			

In a quadratic relationship,
first differences are _____

and second differences are _____.

Use your table of values to graph $y = -x^2 + 2x + 3$

Ex.: Create a TOV for y = 2(x-1)(x+1)

x	У	4	
-2		$\Delta y = y_2 - y_1$	$\Delta^2 v = \Delta v_2 - \Delta v_3$
-1			
0			
1			
2			

In a quadratic relationship,

first differences are _____

and second differences are _____.

Use your table of values to graph y = 2(x-1)(x+1)

Ex.: Create a TOV for $y = -0.4(x - 3)(x + 2)$
--

x	у	4	
-2		$\Delta y = y_2 - y_1$	$\Delta^2 v = \Delta v_2 - \Delta v_3$
-1			
0			
1			
2			

Use your table of values to graph y = -0.4(x-3)(x+2)

In a quadratic relationship,

first differences are ______

and second differences are ______.

Can you predict from the equation that the parabola is opening up?	If yes, how?
Can you predict from the equation that the parabola is opening down?	If yes, how?
Can you predict from the equation the value of the second differences?	

Assigned Work:

p. 137 # 1, 2, 3, 4, 5ab, 6, 7