

Unit 3: Expanding & Factoring

March 22/2011

Expanding Algebraically

Recall: Multiplying two <u>linear</u> terms together forms an area.

We can often represent this multiplication using algebra tiles.

Ex.1 Evaluate: $(x - 1)(x - 2) = x^2 - 3x + 2$

Evaluate: $(4x)(7x) = 28x^2$

Evaluate: (2x + 7)(3x - 5)

Evaluate: $(2x + 7)(3x - 5) = 6x^2 + 11x - 35$

Definitions:

1. Monomial - an expression with a single term

$$3x$$
 or 7 or $5xy$ or a^2bc^3

2. Binomial - an expression with two terms

3. Trinomial - an expression with three terms

$$x^2 + 5x + 6$$
 or $2xy + a + 5$

4. Polynomial - an expression with any number of terms.

Distributive Property:
(a)
$$2x(3x-4)$$
 (b) $(2x+3)(5x+2)$
 $= 2x(3x) + 2x(-4)$ $= 2x(5x+2) + 3(5x+2)$
 $= 6x^2 - 8x$ $= 10x^2 + 4x + 15x + 6$
 $= 10x^2 + 19x + 6$

FOIL (First-Outer-Inner-Last)

(a)
$$(3x - 5)(2x + 7)$$

= $6x^2 + 21x - 10x - 35$
= $6x^3 + 11x - 35$

Assigned Work:

$$9(c) bx(x+1)^{2}$$

$$= 6x(x+1)(x+1)$$

$$= 6x(x^{2}+2x+1)$$

$$= 6x^{3}+12x^{2}+6x$$

$$= x^{2}+2x+1$$

$$= x^{2}+2x+1$$

$$= x^{2}+2x+1$$

$$= x^{2}+2x+1$$

$$= x^{2}+2x+1$$

$$= x^{2}+2x+1$$

$$\begin{array}{c|c}
8 & (2m+3) & (4m-4) \\
& = 8m^2 + 4m - 12
\end{array}$$

$$\begin{array}{c|c}
4m & 8m^2 & 12m \\
& -4 - 8m - 12
\end{array}$$