

Mar 2-10:01 AM

The Midpoint of a Line Segment

The midpoint of a line segment is the point halfway between the two endpoints.

Algebraically, we can consider the x-coordinates and y-coordinates separately, finding the halfway value for each.

Feb 28-11:11 AM

Algebraically, the halfway point between two values is their sum divided by two.

Given two points, (x_1, y_1) and (x_2, y_2) , we can write

$$x_{\text{midpoint}} = \frac{x_1 + x_2}{2}$$
 $y_{\text{midpoint}} = \frac{y_1 + y_2}{2}$

In general, the midpoint formula is written

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Note that the midpoint is a <u>point</u>, expressed as (x, y).

$$2x_{1} y_{1} = x_{2} y_{3}$$

$$2x_{1} y_{1} = x_{2} y_{3}$$

$$= \frac{x_{1} + x_{2}}{2}$$

$$= \frac{-2 + 4}{2}$$

$$= \frac{2}{2}$$

$$= \frac{4}{2}$$

$$=$$

Mar 2-10:19 AM

$$z'_{M} = \frac{x_{1} + x_{2}}{2}$$

$$5 = \left(\frac{1 + x_{2}}{2}\right)$$

$$5 = \left(\frac{1 + x_{2}}{2}\right)$$

$$2(5) = 2\left(\frac{1 + x_{2}}{2}\right)$$

$$2(5) = 2\left(\frac{1 + x_{2}}{2}\right)$$

$$10 = 1 + x_{2}$$

$$x_{2} = 9$$

$$\therefore \text{the other endpoint is } (9.8)$$

Mar 2-8:32 PM

Assigned Work:

p. 78-80 # 2ac, 3, 4e, 5, 6, 8, 9, 11

Feb 28-12:00 PM

Feb 28-12:41 PM