## L2(1.4)Solving Linear Systems by Substitution

Given y = 2x + 3, what does it mean if:

Feb 8/2011

- (a) x = -1 (b) y = 7 (c) y = x 1

solve graphically

Given y = 2x + 3, what does it mean if:

(a) 
$$x = -1$$

$$y = 2(-1)+3$$
  
= -2+3  
= 1

(b) 
$$y = 7$$





## solve graphically

## Solving Linear Systems by Substitution

Graphically, the <u>solution</u> to a system of linear equations is the point(s) where the lines <u>intersect</u>.

Algebraically, we can:

1. isolate one variable in one equation.

- 2. substitute the isolated variable into the other equation.
- 3. solve for the single variable.
- 4. sub the answer from step 3 into the isolated equation from step 1 to find the other variable.

Ex.1. Solve 
$$y = 3x - 2$$
 and  $x = y - 2$ .

Sub the x-value from the second equation into the first equation

Sub () into (2) or (2) into (1)

a little easier

(3):  $x = y - 2$ 

Sub ():  $x = (3x - 2) - 2$ 
 $x = 3x - 2 - 2$ 
 $x =$ 

Feb 10-9:06 PM



Feb 10-9:06 PM

Ex.1. Solve 
$$y = 3x - 2$$
 and  $x = y - 2$ .  
The solution is  $(2, 4)$ , or  $x = 2$  and  $y = 4$ .

To perform a formal check of the solution, sub these values into each equation and compare sides.

$$y = 3x - 2$$
  $x = y - 2$   
 $LS = Y$   $RS = 3x - 2$   $LS = x$   $RS = y - 2$   
 $= 4$   $= 3(2) - 2$   $= 2$   $= 4 - 2$   
 $= 6 - 2$   $= 4$   
 $LS = RS$ 

Feb 10-9:06 PM



Feb 10-9:06 PM



Feb 10-9:16 PM

4(b) 
$$6r + 3s = 9$$
, solve for  $r$ 

$$\frac{6r}{6} = -\frac{3s}{6} + \frac{9}{6}$$

$$r = -\frac{3s}{4} + \frac{9}{4}$$

$$r = -\frac{1}{2}s + \frac{3}{2}$$
Slope intercept

Feb 9-1:02 PM

5(e) 
$$2x+y=5$$
 0  $2x-3y=13$  2

1:  $2x+y=45$ 

$$y=-2x+5$$
 3

Sub 3 into 2
$$x-3(-2x+5)=13$$

$$x+6x-15=13$$

$$-7x=28$$

$$-7x=28$$

$$-7x=4$$
Sub  $x=4$  into 3
$$y=-2x+5$$

$$y=-2(4)+5$$

$$y=-8+5$$

$$y=-8+5$$

$$y=-3$$
.: the solution is  $(4-3)$ 

5(b) 
$$x = y + 40$$
  $3x + y = 16$    
already isolated!

Sub () into (2) Sub  $y = 1$  into (1)

 $3x + y = 16$   $x = y + 4$ 
 $3(y + 4) + y = 16$   $x = (1) + 4$ 
 $x = (1) + 4$ 
 $x = (1)$ 
 $x = (1)$ 

4 marks >> 420
9 marks >> 795
Charge

Let 2 be the manthly charge

Let y be the fixed charge

Feb 9-1:24 PM

Basic 2D Grid.agg