Modelling with Linear Equations

Feb 14/2011

The purpose of today's lesson is to create a <u>linear system of equations</u> from a word problem.

- 1. Identify unknowns and declare them as variables.
- 2. Write at least two equations using the variables.
- 3. Solve using the method of your choice. Some choices are better than others, so choose carefully.
- 4. Write a concluding statement that answers the original question from the word problem.

Feb 18-10:58 PM

4. One lawn fertilizer is 24% nitrogen, and another is 12% nitrogen. How much of each fertilizer should be mixed to obtain 100kg of fertilizer that is 21% nitrogen?

Let y he mass of 24% mixture 10 Let y he mass of 12% mixture. = 0.2

$$x + y = 100$$

0.24x + 0.12y = (0.21)(100) @
mount of
hitrogen in

2. Bert earns an hourly wage plus tips. One week he worked 12h and made a total of \$117. The next week he worked 10h and earned the same amount in tips as the week before, for a total of \$110. What is Bert's hourly wage?

Feb 18-10:59 PM

3. Ernie drove at a speed of 50 km/h from Toronto to Kingston. From Kingston to Ottawa, he drove 80 km/h. If the whole trip was 550 km and it took 8h, what is the distance from Ottawa to Kingston? distance speed time (d) (v) (t) Tortskin Solem/h 80km/h 84 Total 550 km Let x be time from T→K Let y be time from K→O 50x + 80y = 550 x + y = 8

Feb 18-11:01 PM

3. Ernie drove at a speed of 50 km/h from Toronto to Kingston. From Kingston to Ottawa, he drove 80 km/h. If the whole trip was 550 km and it took 8h, what is the distance from Ottawa to Kingston?

Feb 18-11:01 PM

Modelling with Linear Equations

Feb 14/2011

Write a system of equations to model each of the following situations (do not solve):

1. The sum of two numbers is 72. Their difference is 48. Find the numbers.

Let
$$x$$
 and y represent the numbers

 $x+y=72$
 $x-y=48$
 $x=60, y=12$
 $x=12, y=60$

Assigned Work:

write a system of equations for each of the following, but DO NOT SOLVE:

Reading examples 1 & 2 p.33-35 will help. P.53

Feb 16 - 2:27 PM

p. 39 #14

$$x: lg soy \rightarrow 0.005g curbs \rightarrow 0.030g protein$$
 $y: lg veg \rightarrow 0.14g carbs \rightarrow 0.030g protein$
 $carbs: 0.005x + 0.14y = 50$
 (soy)
 (veg)
 $(total)$

protein: $0.030x + 0.030y = 20$
 (soy)
 (veg)
 $(total)$

p.39#11

Let
$$x$$
 be the mass of 80%

Let y be the mass of 66%.

 $x + y = 30$ (total mass)

 $0.8x + 0.66y = 30(0.7)$ (mass of the pure silver)

Feb 15-1:56 PM