Introduction to Quadratic Relations

Complete the handout as we work through these slides together.

Apr 7-12:59 PM

Introduction to Quadratic Relations

In grade 9 you studied Linear Relations and now you will study Quadratic Relations. From the work that we have already done with quadratics, compare and contrast the two relationships.

Linear Relations

Equation: y = mx + b

Ex:
$$y = 2x + 3$$

Properties: $y = -\frac{2}{3}x - 7$

- Straight line - maximum of 1 y-int and 1 x-int

- highest exponent of x is 1. (degree 1) - two coefficients

Quadratic Relations

Equation: $y = ax^2 + bx + c$

y = a(x-s)(x-t)

Properties. 9 = 6(x-2)(3x-4)

- parabola

-highest exponent of × is 2 (degree 2) - 3 exefficients

Note: The highest exponent in a one-variable algebraic expression is called the degree.

What is the easiest way to graph something? Make a table of values (TOV)

Recall - To create a table of values (or TOV):

- 1. Pick a value for x.
- 2. Substitute the *x*-value into the equation.
- 3. Solve for y.
- 4. Repeat for several other values of *x*.
- 5. Plot each point (x, y) on the x-y plane.

Apr 7-1:03 PM

 $y = -(-2)^{2} + 7(-2) + 3$ = -4 - 4 + 3 = -5Ex.: Create a ToV for $y = -x^{2} + 2x + 3$ Use your table of values to graph $y = -x^{2} + 2x + 3$ $x \quad y \quad 4y = y_{2} - y_{1}$ $-2 \quad 3 \quad -2$ $1 \quad 4 \quad -2$ In a quadratic relationship,

Apr 7-1:05 PM

N=-x3 +2x +3

first differences are _ differences

Ex.: Create a TOV for y = -0.4(x - 3)(x + 2)Use your table of values to graph y = -0.4(x - 3)(x + 2)Let y = -0.4(x -

Can you predict from the equation that the parabola is opening up?

If yes, how?

The value of the coefficient in front

a is positive

Can you predict from the equation that the parabola is opening down?

If yes, how?

The coefficient of the x²-term is negative

(a is negative)

an 2nd differences negative

Apr 7-1:54 PM

Can you predict from the equation the value of the second differences?
If yes, how?
The 2 nd différences equal 2a, double the coefficient of the x ² -term.

Apr 7-1:55 PM

Assigned Work:

p. 137 # 1, 2, 3, 4, 5ab, 6, 7

7.
$$y = ax^{2} + bx + c$$
, $a \neq b$
Set $a = 0$
 $y = (0)x^{2} + bx + c$
 $= bx + c \rightarrow linear$
relation!

Apr 11-1:59 PM