Relating Three Forms of a Quadratic using Factoring

Recall:

Apr. 15/2011

Standard Form $y = ax^2 + bx + c$

Factored Form y = a(x - s)(x - t)

Vertex Form $y = \mathbf{a}(x - \mathbf{h})^2 + \mathbf{k}$

Apr 12-2:18 PM

Last unit we worked on expanding, simplifying, and factoring. These are the skills to go between the standard and the factored form.

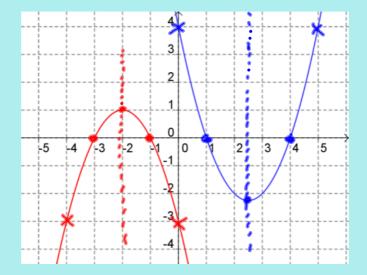
Ex: $y = x^2 - 4x + 3$ is **factored** to obtain the factored form y = (x - 1)(x - 3)

Ex: y = 2(x + 5)(x - 1) is **expanded and simplified** to $y = 2(x^2 - x + 5x - 5)$ obtain the standard form $y = 2(x^2 + 4x - 5)$ $y = 2(x^2 + 4x - 10)$

Ex: $y = -(x + 3)^2 - 4$ is **expanded and simplified** to obtain the standard form

$$y = -(x+3)(x+3) - 4$$

$$y = -(x^2+3x+3x+9) - 4$$


$$y = -(x^2+6x+9) - 4$$

$$y = -x^2 - 6x - 9 - 4$$

$$y = -x^2 - 6x - 13$$

Apr 15-10:32 AM

Obtaining the vertex form requires a new process!

Earlier in the unit we looked at the properties of parabolas and we discovered that the vertex is always _____ of the zeros or of any other two points that are at the same height.

Method 1: Determine the <u>vertex</u> (h, k) from the zeros.

- 1) Determine the zeros.
- 2) Find the x-value of the vertex (h),

h = midpoint of the zeros

$$= \frac{x_1 + x_2}{2}$$

$$= \frac{s+t}{2} \qquad \text{from } y = a(x-s)(x-t)$$

3) Find the *y*-value of the vertex (k),

Sub x-value found for h into original equation

4) To write in vertex form, recall that the a-term is the same in all forms.

Apr 12-12:21 PM

Ex: Determine the vertex, and the vertex form, of
$$y = 2(x-3)(x+5)$$

(1) for zeroes, set $y = 0$
 $0 = 2(x-3)(x+5)$
 $x-3 = 0$
 $x = 3$
 $x = -3$

(2) $x_{m} = \frac{3+(-5)}{2}$
 $x = -2$
 $x = -1$

(3) sub $x = -1$ into $y = 2(x-3)(x+5)$
 $y = 2(-1-3)(-1+5)$
 $y = 2(-4)(4)$
 $y = -32$
 $y = 2(x-4)^{2} + k$
 $y = 2(x-(-1))^{2} + (-32)$
 $y = 2(x+1)^{2} - 32$

$$y = 5x^{2} - 15x - 20$$

$$y = 5(x^{2} - 3x - 4)$$

$$y = 5(x - 4)(x + 1)$$
follows steps $1 - 4$ to find vertex form.

Apr 12-2:32 PM

Ex: Determine the vertex, and the vertex form, of

The problem with this method? Not all quadratics have zeros!

Method 2: Determine the <u>vertex</u> (h, k) from any two points that have the same *y*-value.

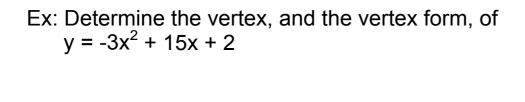
- Determine two points that have the same y-value.
 partial factoring is most effective here:
 factor the first two terms of the standard form set each partial factor equal to zero
- 2) Find the *x*-value of the vertex (h),

h = midpoint of the *x*-values of the two points

$$=\frac{x_1+x_2}{2}$$

3) Find the *y*-value of the vertex (k), Substitute x-value found for h into original equation

Apr 12-2:33 PM


Ex: Determine the vertex, and the vertex form, of
$$y = x^2 - 12x + 5$$

cannot be factored, use partial factoring y -int = $5 \rightarrow point(0,5)$

look for another point where $y = 5$

Set $y = 5$, fund x
 $5 = x^2 - 12x + 5$
 $0 = x^2 - 12x$
 $0 = x(x - 12)$
 $0 = x + 12 = 0$
 $0 = x +$

Apr 12-2:42 PM

Apr 12-2:43 PM

Assigned Work:

p.301 # 1, 5, 7