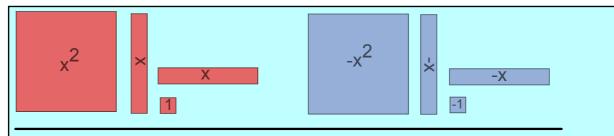
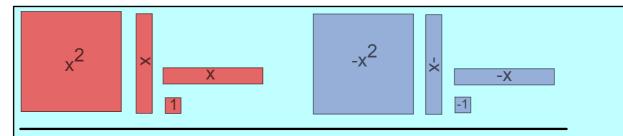

Standard Form to Vertex Form - Completing the Square


Lets look at the vertex form again: $y = a(x - h)^2 + k$

The first part: $a(x - h)^2$ originates from a <u>perfect square trinomial</u> (PST)

Apr 12-2:42 PM

Mar 25-8:02 AM


Identify the missing constant so that the trinomial is a PST. Then factor it.

Mar 25-8:02 AM

Ex: Identify the missing constant so that the trinomial is a PST. Then factor it.

(a)
$$x^2 + 10x + \frac{25}{5^2} = (x + 5)^2$$

(b)
$$x^2 - 18x + 8 = (x - 9)^2$$

 $-\frac{18}{2} = -9$

Identify the missing constant so that the trinomial is a PST, you will have some tiles "left over".

$$x^{2} + 6x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

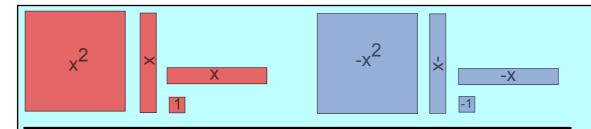
$$x + 3 = (x + 3)^{2} - 6$$

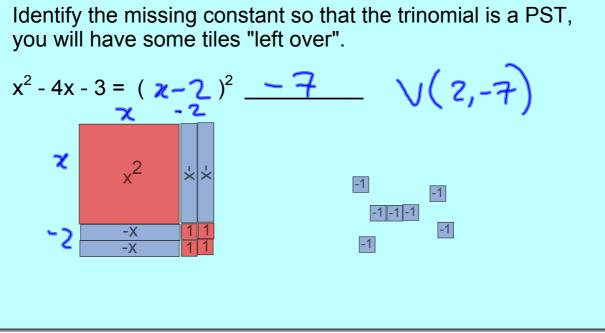
$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$


$$x + 3 = (x + 3)^{2} - 6$$


$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 = (x + 3)^{2} - 6$$

$$x + 3 =$$

Mar 25-8:02 AM

Mar 25-8:02 AM

Method 3: Complete the square

- 1) Factor out 'a' from the first two terms.
- 2) Force a perfect square for the factored first two terms.
- 3) Collect the constants.

Ex: Complete the square for each of the following

a)
$$y = x^2 + 12x - 7$$
 $b = 12$ $\frac{12}{2} = 6$ $6^2 = 36$

$$= (x + 6)^2 - 43$$

b)
$$y = x^2 - 20x + 15$$

$$y = x^2 - 20x + 150 - 150 + 15$$

$$y = (x - 10)^2 - 85$$

May 3-7:51 PM

c)
$$y = 3x^{2} + 12x + 11$$

① factor $0 = 3$
 $y = 3(x^{2} + 4x + 4 - 4) + 11$
 $y = 3(x + 2)^{2} - 4 + 11$
 $y = 3(x + 2)^{2} - 12 + 11$
 $y = 3(x + 2)^{2} - 1$

d) $y = -x^{2} + 6x + 13$
 $x = -1$
 $y = (-1)(x^{2} - 6x) + 13$
 $y = (-1)(x^{2} - 6x) + 13$

May 4-8:48 AM

PST practice: p.230 #3bef, 4ad, 6

p. 331 # 1, 2, 3, 4, 5abcf, 7ade,

Mar 20 - 4:57 PM

