Recall:

Standard Form
$$y = ax^2 + bx + c$$

Factored Form
$$y = a(x - s)(x - t)$$

Vertex Form
$$y = \mathbf{a}(x - \mathbf{h})^2 + \mathbf{k}$$

Today we will determine equations for different quadratics.

Apr 18-2:59 PM

Modelling Quadratic Equations

Apr. 19/2011

Steps:

- 1) Sketch the parabola, if possible.
- 2) Identify the key properties given.
- 3) Select the form of the equation based on the key properties.
- 4) Substitute the given information or use given points along with substitution and/or elimination to solve for any missing values.

Ex: 1) Determine the equation of the graph shown on the right.

(a)

In vertex form...

Step pattern: 1,3,5,...

$$\Rightarrow$$
 $\alpha = 1$.

$$A = (x-5)_{5} + 1$$

$$A = (x-(5))_{5} + (1)$$

$$A = (x-(5))_{5} + (1)$$

Apr 22-8:51 PM

Ex: 1) Determine the equation of the graph shown on the right.

(b)

In standard form...

$$y = ax^2 + bx + c$$

 $a = 1$ (step pattern)
 $c = 5$ (yint)
 $y = x^2 + bx + 5$

Sub vertex (2,1)

$$(1) = (2)^{2} + b(2) + 5$$

 $1 = 4 + 2b + 5$
 $1 - 9 = 2b$

Apr 22-8:51 PM

Ex: 1) Determine the equation of the graph shown on the right.

In factored form...

parabola has no zeros -> cannot be factored

Apr 22-8:51 PM

Ex. 2) State the equation of the parabola obtained by applying a vertical stretch by a factor of 5, along with a vertical shift of 9 units, to the graph of $y = x^2$.

stretch by
$$5 \rightarrow a = 5$$

Shift up
$$9: k=9$$

Vertex form:
$$y = a(x-h)^2 + k$$

 $y = 5(x-0)^2 + 9$
 $y = 5x^2 + 9$

Ex. 3) Write the equation of the parabola that has a vertex at (-3, 5), no zeros, and is wider than $y = x^2$.

Apr 22-9:09 PM

Ex. 4) Find the equation, in factored form, of the quadratic that passes through the points (-3, 0), (5, 0) and (7, 2).

Ex. 5) Find the equation of the parabola, in factored form, that has only one zero, which is 2, and that passes through the point (5, -2).

Apr 18-3:18 PM

Assigned Work:

p. 175 #4 p. 280-284 #2abc, 3ce, 4abe, 5bdf, 6cd, 7b, 8

p. 176 #6