

Recall: For a quadratic relation roots = zeroes = x-intercept = solutions

Given factored form, it is easy to determine the roots:

Ex.1
$$3(x-1)(x+5) = 0$$

There is/are 2 root(s)
The roots are 1 and -5

Ex.2
$$y = -2(x + 1)^2$$

There is/are ____ zero(es)
The zeroes are ____ and ____

Apr 15-1:05 PM

Given vertex form, look at:

- the location of the vertex (above/below x-axis?)
- the direction of opening (up/down?)

Ex.3
$$y = 3(x - 5)^2 - 1$$

The vertex lies **above(below?** the x - axis.

The parabola opens updown?

There is/are ___ zero(es)

To find the zeros set y = 0 and solve

Ex.4
$$y = -2(x + 1)^2$$

V(-1,0)

The vertex lies on the x - axis there is/are _____ zero(es).

•

Apr 19-8:11 PM

Ex.5
$$y = 3(x-5)^2 + 6$$

V(5, 6).

above below? the x - axis

opensupidown?

There is/are ____ zero(es)

Ex.6
$$y = -0.5(x + 3)^2 + 11$$

above/below? the x - axis

opens up/down?

There is/are Zero(es)

In general to identify the zeros from vertex form:

There will be 0 zeroes if the vertex is about_ the x-axis and the parabola opens ______

OR if the vertex is علاماً _ the x-axis and the parabola opens ما ماده علاماً _ the x-axis

There will be 1 zero if the vertex is _ ____ the x-axis

There will be 2 zeroes if the vertex is _____ the x-axis and the parabola opens _____

OR if the vertex is ______ the x-axis and the parabola opens ______

Apr 15-1:16 PM

Assigned Work:

p.350 # 4