Feb3/2011

Review - Part 3

Linear Relationships

Jan 31-2:27 PM

Evaluate (2x - 1) for

$$a) x = 0$$

b)
$$x = 1$$

c)
$$x = 2$$

$$2(0) - 1 = -1$$

$$2(1)-1=1$$

$$2(1)-1-1$$

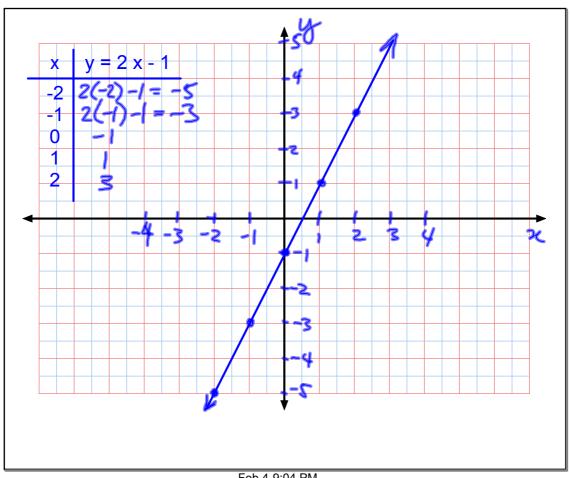
Each value of x will produce a different value for (2x - 1).

We can graph the relationship between x and (2x - 1) by letting y = 2x - 1.

Each pair (x, y) is a point on the x-y plane.

A linear relationship occurs when both variables are linear (they have an exponent of 1).

(a)
$$y = 2 x - 1$$
 (b) $2 x - y - 1 = 0$ (c) $2 x - y = 1$


Slope Standard

It is possible to graph a linear relationship using:

- (1) a table of values
- (2) the y-intercept and x-intercept
- (3) the y-intercept and the slope (m)

To graph a straight line, only **two points** are required.

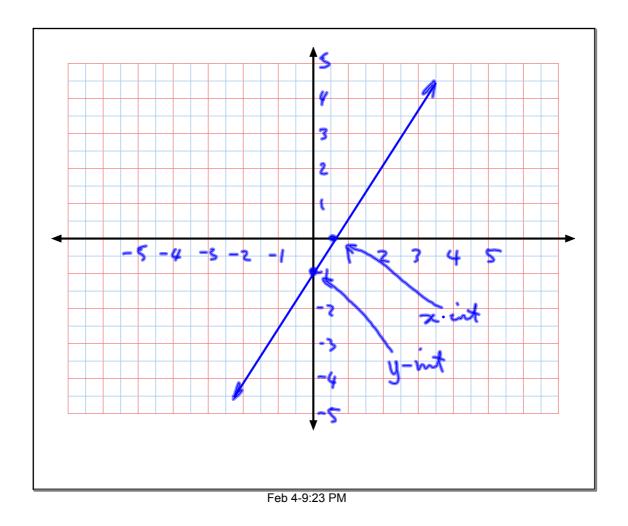
Feb 4-9:09 PM

Feb 4-9:04 PM

Using the intercepts:

The x-intercept is the point where the line crosses

The y-intercept is the point where the line crosses the $u - \omega \times i s$.


$$2x - y - 1 = 0$$

$$2x-y-1=0
2x-y-1=0
2x-y-1=0
2x-y-1=0
2x-y-1=0
-y-1=0
-y-1=0
-y=1
-y=1
-y=1
-y=1$$

To find the x-int, set $\underline{\hspace{1cm}}$ To find the y-int, set $\underline{\hspace{1cm}}$

$$2x-y-1=0$$
 $2(0)-y-1=0$
 $-y-1=0$
 $-y-1=0$
 $-y=1$
 $-y=1$

Feb 4-9:18 PM

Using the y-intercept and slope:

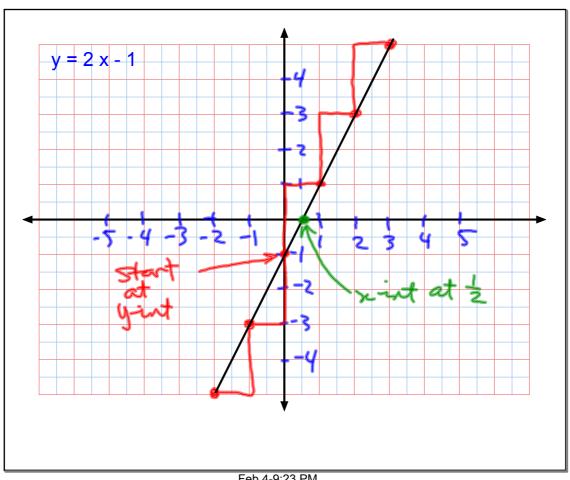
△ is "delta" means "difference"

Recall:

m = slope =
$$\frac{\text{rise}}{\text{run}}$$
 = $\frac{y_2 - y_1}{x_2 - x_1}$ = $\frac{\Delta y}{\Delta x}$

The y-int is our starting point, and we use the slope to find the next point.

A linear equation in slope-intercept form is


$$y = m x + b$$

$$y = 2x - 1$$

$$m = 2$$

$$\frac{rise}{run} = \frac{2}{1}$$

Feb 4-9:24 PM

Feb 4-9:23 PM

Assigned Work:

Extra practice:

A-6: p.468 # 1bd, 2abc, 3abcd, 4

A-7: p.470 # 1abc, 2ab, 3d, 4bc, 5bc, 6

Jan 31-2:39 PM

$$M = -\frac{1}{2}$$

$$M = -\frac{1}{2}$$

$$\frac{\text{rise}}{\text{run}} = \frac{-1}{2} \quad (\text{down 1})$$

$$(\text{right 2})$$

$$2(b) \quad x + 2y = 3$$
put into form $y = mx + b$

$$x + 2y = 3$$

$$-x$$

$$2y = -\frac{1}{2}x + \frac{3}{2} \quad \text{(1) isolate } y$$

$$y = -\frac{1}{2}x + \frac{3}{2} \quad \text{(2) want } 1y$$

$$Slope = -\frac{1}{2} \quad y = \frac{3}{2}$$

$$= 1.5$$

Feb 4-1:23 PM