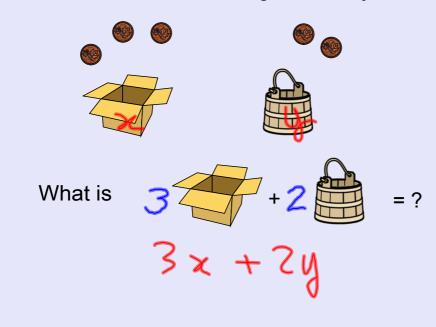
Feb 2/2011

Review - Part 2


Algebraic Expressions

Solving Equations

Jan 31-2:27 PM

A variable is a placeholder for some value.

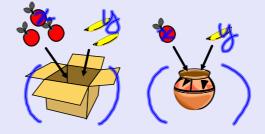
You can think of it like a box that holds some value. We just use letters of the alphabet because that's much easier than drawing boxes or jars or bags.

Feb 2-9:59 PM

A variable is a placeholder for some value. To evaluate an expression with variables, substitute a given number in place of the variable.

if
$$x = -2$$
 and $y = 3$ then
$$2x^{2} - y = 2(-2)^{2} - (3)$$

$$= 2(4) - 3$$


$$= 2 - 3$$

$$= 5 - 3$$

Feb 2-9:53 PM

To simplify an expression:

- 1. Expand any brackets
- 2. Collect like terms

$$2 + 3 = (6 + 4) + (3 + 3)$$

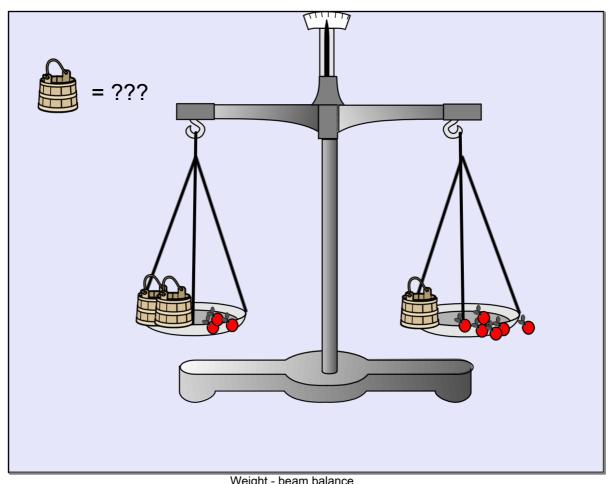
$$= (6 + 4) + (3 + 3)$$

$$= 9 + 7$$

To simplify an expression:

- 1. Expand any brackets
- 2. Collect like terms

Like Terms have the same variables, and matching variables have the same exponent.


Use the distributive property to multiply a single term into a bracket.

$$2(2x^{2}+3)+1(-x^{2}-2x)-5$$

$$= 4x^{2}+6-x^{2}-2x-5$$

$$= 3x^{2}-2x+1$$

Feb 2-9:48 PM

Weight - beam balance

An <u>equation</u> has an <u>expression</u> on each side of an equal sign.

To <u>solve</u> an equation, find the value that makes the left side (LS) equal to the right side (RS). This value is called the <u>solution</u> or <u>root</u> of the equation.

- 1. Expand (and simplify) each side
- 2. Isolate terms with variables on one side, constants on the other side.
- 3. Simplify like terms.
- 4. Solve for the unknown.

(a)
$$2x + 3 = x + 6$$

 $-x - 3$
 $x = 3$
(b) $y + 3(y - 2) = 2(3y + 4)$
 $y + 3y - 6 = 6y + 8$
 $-4y - 8$
 $-4y - 8$
 $-4y - 8$
 $-4y - 8$
 $-14 = 24$
 $-7 = 4$

Feb 2-10:18 PM

Assigned Work:

A-8: p.471 # 1abf, 2bc, 3, 4ac, 5cd, 6bc

A-9: p.472 # 1def, 3