$\qquad$
Some tips:

- take your time - if you rush these, you will make mistakes
- draw a neat, labelled diagram - use a ruler, label everything carefully
- label any new points, slopes, or equations - use different colours if possible


## A) Slope

Given the equation of a line, put it into the form $y=m x+b$ to find the slope, m .
Given two points, $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, the slope is $m=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
B) $\mathbf{y}$-intercept

Given the slope, m , of a line, and any point $A\left(x_{1}, y_{1}\right)$ on the line, substitute the values from the point A into the equation $y=m x+b$ and solve for $b$.
C) Midpoint

Given two points, $A\left(x_{1,} y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, the midpoint is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

## D) Distance

Given two points, $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, the distance between them is $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

## E) Solving a System of Equations

Given two equations in the form $y=m x+b$ or $A x+B y+C=0$, you can solve the system of two equations for the point of intersection, $(x, y)$.

You can solve a system of equations graphically by graphing.
You can solve a system of equations algebraically by substitution or elimination.

## F) Distance From a Point to a Line

The shortest distance between a point and line is the perpendicular distance.

1. Determine the slope of the perpendicular line using the negative reciprocal of the given line $\left(m_{A B}=-\frac{1}{m_{\text {given }}}\right)$.
2. Sub the known point (A) into the equation you have so far $\left(y=m_{A B} x+b\right)$ and solve for the $y$-intercept.
3. Find the point of intersection (B) between the given line and your perpendicular line by solving the system of equations.
4. Determine the distance between your two points (A \& B).

$\qquad$

## Special Lines

Median - A line that joins a vertex of a triangle to the midpoint of the opposite side

1. Find the midpoint of the opposite side using two points and give it a label (point D).
2. Find the slope between the vertex and the midpoint $\left(m_{A D}\right)$.
3. Write the equation that you know so far $\left(y=m_{A D} x+b\right)$.
4. Use the slope and the coordinates of either the vertex or midpoint to solve for the y -intercept (sub A or D into $\left.y=m_{A D} x+b\right)$.

## You now have the equation of the median



Altitude - The line segment representing the height of a polygon, drawn from a vertex to the opposite side so the line is perpendicular to the opposite side.

1. Find the slope of the opposite side using two points $\left(m_{B C}\right)$.
2. Determine the perpendicular slope by taking the negative reciprocal of your slope from step\#1 ( $m_{A E}=-\frac{1}{m_{B C}}$ ). (remember to label these carefully so you don't get them confused)
3. Write the equation that you know so far $\left(y=m_{A E} x+b\right)$.
4. Sub the coordinates of your vertex (A) into your equation to solve for the $y$-intercept.

You now have the equation of the altitude


Perpendicular Bisector - A line that is perpendicular to a line segment and passes through the midpoint of the line segment.

1. Find the midpoint (D) of the line segment using two points (BC).
2. Find the slope of the line segment using the same two points $\left(m_{B C}\right)$.
3. Determine the perpendicular slope by taking the negative reciprocal of the slope from step $\# 2\left(m_{\perp}=-\frac{1}{m_{B C}}\right)$. (remember to label these carefully so you don't get them confused)
4. Write the equation that you know so far $\left(y=m_{\perp} x+b\right)$.
5. Sub the midpoint from step\#1 into your equation to solve for
 the y -intercept.
$\qquad$

## Centres in Triangles:

Centroid - the point where the medians of a triangle meet

1. Each triangle has three medians, and you will need two of them to find the centroid. Using the steps for medians, you need to:
a) Find the equation of the any median from any vertex.
b) Find an equation for a second median from any other vertex.

You now have two equations in the form $y=m x+b$. Write them out clearly!
2. Solve your system of equations for the point of intersection, $(x, y)$.

You have just determined the centroid of your triangle

Circumcentre - the point where the perpendicular bisectors of a triangle meet

1. Each triangle has three perpendicular bisectors, and you will need two of them to find the circumcentre. Using the steps for perpendicular bisectors, you need to:
a) Find the equation of the perpendicular bisector from any side.
b) Find an equation for a second perpendicular bisector from any other side.

You now have two equations in the form $y=m x+b$. Write them out clearly!
2. Solve your system of equations for the point of intersection, $(x, y)$.

You have just determined the circumcentre of your triangle

Orthocentre - the point where the altitudes of a triangle meet

1. Each triangle has three altitudes, and you will need two of them to find the orthocentre. Using the steps for altitudes, you need to:
a) Find the equation of the altitude from any vertex.
b) Find a second equation for the altitude from any other vertex.

You now have two equations in the form $y=m x+b$. Write them out clearly!
2. Solve your system of equations for the point of intersection, $(x, y)$.

You have just determined the orthocentre of your triangle

