1. When we try to solve problems, there can be four types of outcomes, which are:
1)
2. How do the solutions to these following problems illustrate the four types of outcomes above? Of course, you'll need to solve the problems first!

a) Pay $\$ 1.85$ using 11 coins	b) Pay $\$ 1.85$ using the smallest number of coins
c) Pay $\$ 1.85$ using 3 coins	d) Pay $\$ 1.85$ using only quarters and dimes

3. A hockey championship is designed as a best-of-five playoff between two teams, the Reds and the Blues. How many different sequences of wins and losses can result in the Red team winning the series?
4. Assuming the $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ represent different digits in the range 1 to 9 , then find $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D so that the multiplication is true.

C B A
x A
D C C A

5. Challenge Problem:

There are five cars in a race, each with one of the colours red, grey, blue, orange or yellow. The driver of each car wears a helmet of the colour red, grey, blue, orange or yellow. Complete the table.
a) No driver had a car with the same colour as his helmet
b) No car finishes the same place as its number
c) Car 3 did not finish in the first 3 places
d) The driver wearing the red helmet won the race.
e) Car 4 was yellow
f) The orange car finished behind the red car.
g) Car 5 finished in third place

Car Number	Car Colour	Helmet Colour	Place in Race

h) The driver of car 2 hated the driver wearing grey helmet but liked the driver of the red car
i) The driver of the orange car wore a grey helmet.
j) The driver wearing the blue helmet finished ahead of these three different cars, car 1, red car, grey car
k) The grey car finished last.

1) Car 2 was neither the orange car nor the grey car
m) Car 3 bumped the red car on the first lap.
n) The driver who finished last wished to have had the orange helmet.
(Hint: you can do this just using the provided table, and repeatedly going through the clues).
