Recall: Toolkit of Parent Functions

Linear: $y=x$	Quadratic: $y=x^{2}$	Cubic: $y=x^{3}$
Radical: $y=\sqrt{x}$	Exponential: $y=2^{x}$	Reciprocal: $y=\frac{1}{x}$
Sinusoidal: $y=\sin x$	Absolute Value: $y=\|x\|$	Note: There are many types of functions other than the ones shown here.

Useful Definitions:

- Interval(s) of Increase: interval(s) where y increases as x increases.
- Interval(s) of Decrease: interval(s) where y decreases as x increases.
- Turning Point: point where the function changes from increasing to decreasing, or vice versa.
- Even Function: function that is symmetric about the y-axis (i.e., $f(-x)=f(x))$.
- Odd Function: function that is rotationally symmetric about the origin (i.e., $f(-x)=-f(x)$).
- Continuous Function: function with no holes or breaks in its graph.
- Discontinuous Function: function with at least one hole or break in its graph.

Exercise 1: Match each function with a characteristic of its graph. Each number may only be used once.

$y=\frac{2}{(x-3)^{2}}-1$	$y=-\frac{1}{2}+2$	$y=2 \sin x$
$y=-(x-3)^{2}+2$	$y=\|x\|$	

Characteristics:

1. Domain: $\{x \in \mathbb{R}\}$
2. Range: $\{y \in \mathbb{R}\}$
3. One Turning Point
4. As $x \rightarrow \infty, y \rightarrow-1$
5. Range: $\{y \in \mathbb{R} \mid y \geq 0\}$
6. As $x \rightarrow-\infty, y \rightarrow \infty$

Exercise 2: Sketch a possible function for the following characteristics.

- Domain: $\{x \in \mathbb{R}\}$
- Range: $\{y \in \mathbb{R}\}$
- Increasing on intervals:
- $(-\infty,-3)$ or $-\infty<x<-3$
- $(2, \infty)$ or $2<x<\infty$
- Decreasing on intervals:
- $(-3,2)$ or $-3<x<2$
- Turning Points (x, y) at:
- $(-3,1)$ and $(2,-4)$

What type of function is this?

