Unit 1 – Characteristics & Properties of Functions Lesson 3 – Handout – Properties of Graphs of Functions

Recall: Toolkit of Parent Functions

Quadratic: $y = x^2$

Cubic:
$$y = x^3$$

Radical:
$$y = \sqrt{x}$$

Exponential: $y = 2^x$

Reciprocal: $y = \frac{1}{x}$

Sinusoidal: $y = \sin x$

Absolute Value: y = |x|

Note: There are many types of functions other than the ones shown here.

Useful Definitions:

- Interval(s) of Increase: interval(s) where y increases as x increases.
- <u>Interval(s) of Decrease:</u> interval(s) where y decreases as x increases.
- <u>Turning Point:</u> point where the function changes from increasing to decreasing, or vice versa.
- Even Function: function that is symmetric about the y-axis (i.e., f(-x) = f(x)).
- Odd Function: function that is *rotationally symmetric* about the origin (i.e., f(-x)=-f(x)).
- Continuous Function: function with no holes or breaks in its graph.
- <u>Discontinuous Function:</u> function with at least one hole or break in its graph.

Unit 1 – Characteristics & Properties of Functions Lesson 3 – Handout – Properties of Graphs of Functions

Exercise 1: Match each function with a characteristic of its graph. Each number may only be used once.

$$y = \frac{2}{(x-3)^2} - 1$$

$$y = -\frac{1}{2} + 2$$

$$y = 2\sin x$$

$$y = -(x-3)^2 + 2$$

$$y = |x|$$

$$y = \left(\frac{1}{2}\right)^x$$

Characteristics:

1. Domain: $\{x \in \mathbb{R}\}$

4. As $x \to \infty$, $y \to -1$

2. Range: $\{y \in \mathbb{R}\}$

5. Range: $\{y \in \mathbb{R} | y \ge 0\}$

3. One Turning Point

6. As $x \to -\infty$, $y \to \infty$

Exercise 2: Sketch a possible function for the following characteristics.

• Domain: $\{x \in \mathbb{R}\}$

• Range: $\{y \in \mathbb{R}\}$

• Increasing on intervals:

 $\begin{array}{lll}
\circ & (-\infty, -3) \text{ or } -\infty < x < -3 \\
\circ & (2, \infty) \text{ or } 2 < x < \infty
\end{array}$

• Decreasing on intervals: • (-3,2) or -3 < x < 2

• Turning Points (x, y) at: • (-3,1) and (2,-4)

What type of function is this?

