
Mathematical Operations in Java

Basic Mathematical Operations

Many mathematical expressions in Java look identical to those that you would write on paper. There
are five basic arithmetic operators in Java, as shown below.

Java Operator Purpose Example

+ Addition 5 + 3.4 = 8.4

- Subtraction 203.9 – 9.12 = 194.78

* Multiplication 3 * 4.7 = 14.1

/ Division 17.889 / 6.7 = 2.67

% Modulo Division (calculates the remainder) 35 % 9 = 8

In general, operations on values of the same type will produce an answer that is also of the same
type. It is particularly important to keep this in mind when performing an integer division. Consider the
following examples:

(a) 15 / 3 gives 5

(b) 13 / 4 gives 3 (rather than 3.25)

(c) 9 / 5 gives 1 (rather than 1.8... notice that the answer is truncated, not rounded)

Whenever integer and floating point values are mixed in an expression, the result will be a floating
point value. Notice the subtle difference this creates when applied to our previous example.

(a) 15 / 3.0 gives 5.0 (a floating point answer)

(b) 13.0 / 4 gives 3.25

(c) 9 / 5.0 gives 1.8

Page 1 of 4

Mathematical Operations in Java

Modulo Division

It is worth giving an extra moment to consider and understand the modulo operator. This operator is
used to find the remainder from an integer division, which is actually the first type of division taught to
children in elementary school.

Consider the example of 35 % 9 = 8. To begin, we ask, “How many times does 9 divide evenly into
35?” Simply following the nine-times-table yields

9×1=9 9×2=18 9×3=27 9×4=36

The answer is obviously 3 times. Now, what is the remainder? Subtract 27 from 35 for a remainder of
8.

This mathematical concept is actually quite useful and frequently used in programming, which is why
many programming languages, including Java, provide it in a compact and convenient form.

Division by Zero

Both regular division and modulo division pose the risk of accidentally performing an illegal
mathematical operation, which is division by zero. In mathematics, division by zero is undefined, and
this must apply to computer programs as well.

Since most calculations in programs use variables, it may not be obvious when or if this is going to
happen. It is always a good idea to carefully consider the possible values of any variables when you
perform a division operation.

If a division by zero occurs while performing an integer operation, the Java program will exit with an
error. This is known as throwing an exception, and in this case, the exception is an
ArithmeticException. Basically, the program is informing the user that it has encountered a situation
that it doesn't know how to handle. Later we will learn about handling various types of exceptions, but
for now, we will simply try to avoid this situation.

When performing floating point operations, the division by zero is handled by Java using one of three
special floating point expressions, as summarized in the table below.

Floating Point
Operation Result Can be used in further

calculations?
Will print as the

string...
positive value divided

by zero positive infinity yes Infinity

negative value divided
by zero negative infinity yes -Infinity

zero divided by zero not a number no NaN

Page 2 of 4

Mathematical Operations in Java

Mathematical Methods

To allow for mathematical operations beyond basic arithmetic, Java provides additional functionality
using a large group of methods contained in the Math class. To use any of these methods, we must
identify them as being part of the Math class. Some of the more common and useful methods from
the Math class are shown in the following table.

Mathematical Operation Java Syntax Description

 x Math.sqrt(x) square root of x

x y Math.pow(x, y) x raised to the exponent y

∣x ∣ Math.abs(x) absolute value of x

Some other important mathematical methods do not correspond to traditional mathematical
operations, but are very useful in programming.

Java Syntax Description

Math.round(x) rounds a floating point value, x, to the nearest integer (up or down)

Math.ceil(x) rounds a floating point value up to an integer value

Math.floor(x) rounds a floating point value down to an integer value

Math.random generates a random number between 0 and 1 (0≤x1)
includes the value 0, but not the value 1 (0 to 0.999999...)

Exercises

 1. A quadratic equation of the form a x2b xc=0 has roots (zeroes)

 −b±b2– 4a c
2a

Write a fragment of code that efficiently determines the values of the roots (root1 and root2) of the
quadratic equation with coefficients a, b, and c. Assume that all the variables have been declared
as type double and that the equation has two real roots.

Page 3 of 4

Mathematical Operations in Java

 2. Each of the following expressions is intended to evaluate the expression

a x2b
c xd

Some are correct while others are not. Classify each as being correct or incorrect. For those that
are incorrect, give the reason(s).

(a) (a * x * x + b) / ((c * x + d)
(b) (a * Math.pow(x, 2) + b) / (c * x + d)
(c) ((a) (x) (x) + (b)) / ((c) (x) + d)
(d) (b + x * (x * (a))) / (d + x * (c))
(e) (a) * Math.pow(x,2) + (b) / ((c) * (x) + d)
(f) (a * (x * x)) + (b) / c * (x) + d

 3. Suppose that the following declarations have been made.

int i = 3, j = 4, k = 2;

Using these starting values in each part, find the value of each variable after the given statement
has been executed.

(a) j = ++i * k--;
(b) i = --j + k/2;
(c) k = i-- - j++;
(d) j = (2*i++)%(++k + 1);
(e) i += j -= --k;
(f) i *= j /= k++;

 4. Write a program that asks the user for a three-digit number, finds the sum of the digits of the
number, and then prints both the number and its digit sum.

Page 4 of 4

