
Searching & Sorting in Java – Selection Sort

Using an insertion sort, values are constantly being moved. A sorting technique that reduces the amount of
data movement is the selection sort. Once an item has been placed in its position in the ordered sequence,
it is never moved again.

We can begin by scanning all of the values and finding the largest one. This value is placed at the top (end)
of the list, exchanging positions with the item that was originally in that position.

On each subsequent pass, we examine progressively shorter lists, as the end values are already in their
correct location.

1. Locate the largest value 6 3 5 8 2
2. Swap the largest value with the end of the list 6 3 5 2 8
3. Locate the largest remaining value 6 3 5 2 8
4. Swap this value with the end of the shortened list 2 3 5 6 8
5. Locate the largest remaining value 2 3 5 6 8
6. Swap with the end of the shortened list 2 3 5 6 8
7. Locate the largest remaining value 2 3 5 6 8
8. Swap with the end of the shortened list 2 3 5 6 8
9. With only one element left, sort is complete 2 3 5 6 8

To code this algorithm in Java, we note that, for an array called list, we must successively find the largest
item in sublists of sizes list.length, list.length-1, etc..

for (int top = list.length – 1; top > 0; top--)
// locate largest item and then
// swap it with item at list[top]

The full method is as follows.

public static void selectSort (double[] list)
{

for (int top = list.length – 1; top > 0; top--)
{

int largeLoc = 0; // location of largest element
// assume list[0] is largest to start

for (int i = 1; i <= top; i++) // check list[1] to list[top]
if (list[i] > list[largeLoc])

largeLoc = i;

double temp = list[top]; // temporary storage
list[top] = list[largeLoc];
list[largeLoc] = temp;

}
}

10. May. 2010 Page 1 of 2

Searching & Sorting in Java – Selection Sort

Exercises

1. If a selection sort were to be used to sort the data shown below in alphabetical order, show the data after
each pass of the sort.

Robert Brian Victor David Scott

2. In the selectSort method, what would happen if the expression list[i] > list[largeLoc] were
to be changed to list[i] < list[largeLoc]?

3. In our version of selection sort, if the largest item is already at location top in the list, then the method
still swaps that value with itself, even though it is not necessary.

(a) How could the method be changed to avoid this unnecessary swapping?

(b) Why might is be better to leave the method as it is?

4. On each pass of our version of selection sort, the largest value among the remaining unsorted items was
placed in its correct position. An alternate form of the algorithm uses each pass to place the smallest
value among the remaining unsorted values in its correct position.

(a) Given the set of data

8 9 6 1 2 4

show the data as they would appear after each pass of a selection sort that moves the smallest data.

(b) Write a Java method that implements this algorithm to sort an array of int values.

5. Sometimes we are only interested in knowing the values that would occupy one end of the list if the list
were sorted. For example, we may want to know the scores of only the top ten competitors in a contest.
Overload our selection sort method so that it puts the k largest values in order in the last k positions of
the array. The value of k should be a parameter of the method.

public static void selectSort (double[] list, int k)

10. May. 2010 Page 2 of 2

