
Searching & Sorting in Java – Shell Sort

Although our previous sorting algorithms (insertion, selection, bubble) work well enough for short lists, they
tend to slow down drastically with long lists. This is due to the large number of comparisons that are needed
to find the correct positions for each data element.

This is not always true. If, for example, the data is almost in order, an algorithm like insertion sort will be
very fast, because only a few comparisons are needed for each value.

Shell sort adapts insertion sort to produce a sorting technique that works well even with long lists that are
randomly ordered. The key is that data can be moved long distances in the list with only a few comparisons.

The sort is based upon the following idea: Rather than sorting the entire list at once, we sort every kth

element. Such a list is said to be k-sorted. A k-sorted list is made up of k sublists, each of which is sorted,
interleaved together.

Suppose we are given an unsorted list of integers.

34 21 40 12 27 18 29 13 25 17 11 38

This can be decomposed into three sublists, each with 4 elements.

34 12 29 17
21 27 13 11

40 18 25 38

If we now sort each sublist independently, we obtain

12 17 29 34
11 13 21 27

18 25 38 40

which yields the following 3-sorted list.

12 11 18 17 13 25 29 21 38 34 27 40

If we compare the unsorted list, to the 3-sorted list, to the sorted list, we see that the 3-sorted list has moved
significantly toward the sorted goal by sorting small sublists (which is comparatively fast).

Unsorted 34 21 40 12 27 18 29 13 25 17 11 38
3-sorted 12 11 18 17 13 25 29 21 38 34 27 40
Sorted 11 12 13 17 18 21 25 27 29 34 38 40

Shell sort repeatedly used insertion sort to create sorted sublists. Initially a k-sorted list is created using a
large value of k so that values can be moved long distances. On subsequent passes, smaller values of k
are used, until, on the final pass, the value of k is set to one. A 1-sorted list is completely sorted.

12. May. 2010 Page 1 of 3

Searching & Sorting in Java – Shell Sort

Consider the following example which creates lists that are 7-sorted, 3-sorted, and then 1-sorted.

Unsorted 64 31 10 40 22 49 82 20 29 56 40 18 19 27 26

First Pass

20 26 64
29 31

10 56
40 40

18 22
19 49

27 82

7-sorted 20 29 10 40 18 19 27 26 31 56 40 22 49 82 64

Second Pass
20 27 40 49 56

18 26 29 40 82
10 19 22 31 64

3-sorted 20 18 10 27 26 19 40 29 22 49 40 31 56 82 64

Third Pass
1-sorted 10 18 19 20 22 26 27 29 31 40 40 49 56 64 82

In using Shell Sort, we noted that the first pass should used a large value of k so that values could move
long distances quickly. We also noted that the last pass must use k = 1 to completely sort the list. This
discussion begs the question: What is the best sequence of values for k? The answer to that question is
not well defined, despite a considerable amount of work done on the problem.

One sequence that has been found to give good results follows the pattern 1, 4, 13, 40, ...

Each term in the sequence is three times the previous term, plus one.

12. May. 2010 Page 2 of 3

Searching & Sorting in Java – Shell Sort

Exercises

1. Given the following data, show how they would appear after they have been 5-sorted.

26 37 21 41 63 19 61 72 55 29 47 18 26 22

2. Starting with the same set of data from question 1, show how they would appear 4-sorted.

3. How would you answer the following argument against using Shell Sort? "The last step of Shell Sort,
using k = 1, is simply a normal insertion sort. Since Shell Sort performs many preliminary steps before
this final one, it must be slower than a single insertion sort."

4. Suppose you were going to write a version of Shell Sort using the sequence of k-sorts suggested
previously. For a list containing n elements, the first value of k that should be used is the largest value in
the sequence that is less than n. For example, in a list of 50 elements, the largest k value would be 40,
so the first pass should be 40-sorted.

(a) Write a sequence of statements that will initialize k correctly for a given value of n.

(b) Write a statement that will, for any value of k in the sequence, produce the next smaller value of k.

5.
(a) Write a method shellSort to sort an array of int values in ascending order. In performing the

k-sorts, use the sequence of values of k suggested in the text. Be sure to use insertion sort at each
stage of the sort.

(b) Test your method by writing a complete program that first generates an array of 500 random int
values in the range [0, 999], prints this array (ten values per line), sorts the array using your
shellSort method, and then prints the resulting array (ten values per line).

6. Experiment with using Shell Sort with sequences where k is other than the suggested values, testing
your sequences on large arrays of integers and noting the time required by the sort in each case. To
measure the time taken by a sort, you can use the method currentTimeMillis() in the System
class. The method has the signature

 public static long currentTimeMillis()

and it returns a long value, the number of milliseconds since midnight, January 1, 1970.

12. May. 2010 Page 3 of 3

