If-Then-Else

if (condition) then
statements if condition is true
else \hookleftarrow the "else" is optional!
statements if condition is false
end if

$<$	less than	$<=$	less than or equal to
$>$	greater than	$>=$	greater than or equal to
$=$	equal to	not $=$	not equal to

Example - Voting Age 3b. Add new code - another option

var age : int \% declare a variable for age
\% ask the user's age
put "How old are you?".
get age
\% if they are 18 or older, they can vote
if (age >= 18) then
put "You can vote!"
else \% if they are under 18, they cannot vote put "You are not old enough to vote."
end if

The For Loop

The counted loop is so common that a special type of loop was created to streamline the code.
for count : 1 .. 10 put count
end for

Notes:

1. Do NOT declare the variable count. The for loop will take care of that automatically

Example - Blast Off!

put "Begin Count Down..."
for decreasing count : 10 .. 1 put count
delay(1000)
end for
put "Blast Off!"

Changing the Increment/Decrement

So far, we have incremented or decremented by 1. It is possible to take larger steps using the "by" command to specify the (integer) step size.
for count : 1 .. 10 by 2
put count
end for
for decreasing count : 10 .. 1 by 3 put count
end for

Rolling a Die (simulation)

\% roll a single die 5 times
var roll : int
for count : 1 .. 5
randint (roll, 1, 6) put "You rolled a ", roll end for

Conditional Loops Exit Condition Placement

For consistency and readability, the exit condition will only appear at the very beginning or very end of the loop.
loop
exit when
(condition)
do something
end loop
loop
do something
exit when (condition)
end loop

Conversion Operations - Turing

var num : int

declare a constant value for pi

const pi : real := 3.14
num := floor(pi) \% truncated to 3 num := round (pi) \% rounded to 3 num $:=$ ceil(pi) \% rounded up to 4
num := floor(2.71) \% truncated to 2 num := round (2.71) \% rounded to 3 num $:=$ ceil (2.71) \% rounded up to 3

Integer Division - Turing

In Turing, there are operators for both the remainder and the whole number (quotient).
var quotient : int
var remainder : int
quotient := 7 div 3 \% is 2
remainder := $7 \bmod 3 \%$ is 1
put "7/3 = ", quotient .. put " remainder ", remainder

