

Subprograms

Procedures

Recall - Functions

A function is a subprogram that accepts input
parameters and then returns an output value. The
input values and output value can be the same or
different data types.

For example:
 - a pop machine inputs money and selections on
a keypad, and outputs a type of soft drink
 - the length() function has a string for input,
and the output is an integer.

Functions

Important Properties:
1. Input parameters can be of different data types.

2. There must be a single output value (result),
and it can also be of a different data type than the
inputs.

3. The input parameters are not changed by the
function.

Functions vs. Procedures

When first learning about functions and
procedures, they are often interchangeable. Both
can accomplish simple tasks equally well.

1. A procedure does not have a return value. A
function must return a single value.

2. A procedure can make changes to input
parameters, but only if the procedure is declared
to allow it. This allows a procedure to return
multiple values by making changes.

Declaring Procedures

function doThis (input1 : data1) : data2
 ...
end doThis

procedure doThat (input1 : data1)
 ...
end doThat

Notice that the only difference (so far), is that the
“: data2” is missing from the end.

Example – Perimeter & Area
of a Circle

We have already considered this problem using
functions. Like a function, a procedure must be
declared before we can use it.

It is also important to note that declaring a
procedure does not do anything on its own. It
must be called from the main program for the
code to be run.

Declaring Procedures - Example
function circumference(radius : real) : real

% returns circumference of a circle
result 2 * 3.14 * radius

end circumference
function circleArea(radius : real) : real

% returns area of a circle = pi * r-squared
result 3.14 * radius * radius

end circleArea
procedure circleStats(radius : real)
 % outputs perimeter and area of circle
 put “P = “, circumference(radius)
 put “A = “, circleArea(radius)
end circleStats

Calling Procedures

Since a procedure does not have a return value,
there is no need for the assignment operator “:=”

To use a function, we might code

newValue := someFunction (input1, input2)

For a procedure, no assignment is necessary

someProcedure (input3, input4)

Calling a Procedures - Example

procedure circleStats(radius : real)
 % outputs perimeter and area of circle
 put “P = “, circumference(radius)
 put “A = “, circleArea(radius)
end circleStats
%%%%% Main Program %%%%%
var radius : real
put “Enter a radius”..
get radius
circleStats (radius)

