

Programs Using
Multiple Files

Include Files

Organizing Programs

A large component of good programming is
related to the organization of a program.
Obviously, it is important for the programmer to
understand their code.

As important, or perhaps more so, is making the
code understandable to the next person who
looks at it, such as another programmer (or the
teacher who will be grading it!).

Organizing Programs

Some of the tools used to organize and help
explain programs are:

- headers with information about the programmer
and a description of the program

- functions & procedures declared at the top of
programs

- meaningful names for variables and
subprograms

- proper indentation & spacing

Size of Programs

As programs become more complex, it is
inevitable that they will get longer. Large
programs can easily stretch to hundreds, or even
thousands, of lines of code.

In industry, programs containing over 1 million
lines of code are quite common.

It is very difficult to focus on too much code at
once, so we break it into pieces, or modules, to
make it easier to understand.

Modularity with Subprograms

Functions and procedures are both examples of
programming modularity. Code is removed from
the main program and it is possible to focus on
getting smaller pieces of code to work.

Even with good subprograms, the program files
continue to get larger. A large file is slow to load,
spans many screens, and is difficult to navigate.

Modularity with Multiple Files

Many programming languages also allow
modularity by using multiple files. This reduces
the size of individual files, making them easier to
work with.

The main program must be in a single file. Thus it
makes sense to use subprograms to simplify the
main program, and keep functions and
procedures in separate files to be used as
needed.

Libraries of Subprograms

Most modern programming languages do some of
this for you. For example, all of the string
functions, such as length(), strint(), and intstr(),
are part of the Turing string library.

There are many libraries with various functions
and procedures for mathematics, formatting,
graphics, file I/O, etc.

When you load Turing, they are automatically
available.

Include Files

An include file is an external file that you must
explicitly specify as part of your program. It
usually contains subprograms, but could have
other items such as mathematical constants (e.g.,
pi=3.14159)

Include files are sometimes referred to as header
files.

In Turing, our include files should have the “.t”
extension, just like the main program files.

Using Include Files

include “file1.t”
include “file2.t”
%%%%% Main Program %%%%%%%
...
do_this() % from file1.t
...
do_that() % from file2.t
...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

