

Using Arrays with Subprograms

Review - What is an Array?

Recall: An array is a collection of one type of data
(e.g., integer, string) that is used for a single
purpose (e.g., grades, addresses).

Each box is called an element of the array, and
the position of each element is the index.

1 2 3 4 5

an array with 5 elements

Subprograms using Arrays
For the purposes of a function or procedure, an
array is just like any other variable. You can pass
it to the subprogram as a parameter (just like an
integer, string, or real)

A function can return an array, and a procedure
can modify an array if required.

Since the declaration of an array is more
complicated than a variable, we must show the
same care when using arrays with functions and
procedures.

Arrays in Turing

To declare an array in Turing:

var name : array low .. high of dataType

name – the name of the array

low – the lower index value (usually 1 or 0)
high – the upper index value

dataType – integer, string, real, etc...

Example – Passing a Specific
Array to a Function

procedure printArray (arr : array 1 .. 3 of string)
 for i : lower (arr) .. upper (arr)
 put arr (i)
 end for
end printArray
var firstname : array 1 .. 3 of string
% initialize the array
firstname(1) := “fred”
firstname(2) := “wilma”
firstname(3) := “pebbles”
% output the array
printArray(firstname)

Array Functions

Like strings, there are specialized functions in
Turing to help handle arrays.

In the previous example, we used the upper() and
lower() functions:

upper(arrayName) – returns the highest index
value in the array

lower(arrayName) – returns the lowest index
value in he array

Example – Passing a General
Array to a Function

procedure print_array (arr : array 1 .. * of string)
 for i : lower (arr) .. upper (arr)
 put arr (i)
 end for
end print_array
var firstname : array 1 .. 3 of string
% initialize the array
firstname(1) := “fred”
firstname(2) := “wilma”
firstname(3) := “pebbles”
% output the array
printArray(firstname)

Initializing Arrays

It is good practise to initialize (i.e., set a starting
value) for all variables, including the elements of
an array.

Sometimes, we want to set all elements to the
same value. A for loop is best for this:

for i : 1 .. upper(grades)
grades(i) := 0

end for

Initializing Arrays

If each value will be different, the array elements
can be filled one at a time:

var firstname : array 1 .. 3 of string
% initialize the array
firstname(1) := “fred”
firstname(2) := “wilma”
firstname(3) := “pebbles”

Initializing Arrays

There is a short form for initializing arrays, but the
problem is that it results in very long lines of code
(less readable):

var firstname : array 1 .. 3 of string
: init (“fred”, “wilma”, “pebbles”)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

