

Storing Data in Files

Why Save Data?

Almost every program needs to save data.
 Spreadsheets save numbers and formulae.
 Word processors store text.
 Web browsers save bookmarks.
 Games save progress and scores.

Unfortunately, when a program stops, any data in
memory (RAM) is lost.

Where to Save Data?

To save data, programs store information in some
kind of file. Eventually, the program will use that
file to retrieve the (hopefully) useful data at a later
time.

There are a number of file types that can be used
to save data, but the most common is a simple
text file.

Text Files

A text file contains... text. There are no special
codes or formatting. Thus it is typically used to
store simple data made up of text and numbers.

A text file would not be used for complicated data
such as images, audio, or video.

File “Handles”

When we create a text file for personal use, we try
to identify it with a meaningful name (e.g.,
addresses) so it can be easily identified for future
use.

A program needs to create a “handle” to use as a
reference to a particular filename. This allows the
program to consistently keep track of the file while
the program is running.

Opening a File

In Turing, the file handles are integers. First we
need to create an integer variable.

var fileNum : int

Next we open the file by associating the file
handle with the name of our text file.

open : fileNum, “someFile.txt”, put

Opening a File for Output
In Turing, the file handles are integers. First we
need to create an integer variable.

var fileNum : int
open : fileNum, “someFile.txt”, put

Notice that we had to specify the operation that
was going to be used on the file. In this case, we
are opening the file for output.

This means only the put command can currently
be used with this file.

Output Data to a File
var fileNum : int
open : fileNum, “someFile.txt”, put
put : fileNum, “some data for a file”
close : fileNum

The syntax of the put command is slightly different
than what we have used before.

When finished with a file, it is important to close
the file.

Input Data from a File

To retrieve data from a file, the process is very
similar. Now the file must be opened for input.

var fileNum : int
var data : string
open : fileNum, “someFile.txt”, get

In order to get some data, it must be stored in a
variable. When reading from text files, it is safest
to use strings, although other data types are fine
(provided you are very sure of the file).

Input Data from a File

var fileNum : int
var data : string
open : fileNum, “someFile.txt”, get
get : fileNum, data
put data % output data to screen
close : fileNum

Again, the syntax is slightly different than a typical
get statement.

Input Data from a File

var fileNum : int
var data : string
open : fileNum, “someFile.txt”, get
get : fileNum, data : *

Retrieving data from a file has the same
limitations as getting input from the user. If there
are spaces that you want to include in the string,
you must put the wildcard (*) at the end of the get
statement.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

