
Classes and Objects in Java – Comparing & Displaying Objects

As we have previously discussed, there are significant differences in how we need to work with
objects, as compared to the primitive data types.

Given the following declarations,

Fraction f = new Fraction(2, 5);
Fraction g = new Fraction(2, 5);

we must remember that the variables f and g act as references to the locations in memory containing
the objects. A reference is equivalent to an address in memory.

Even though the values in the fields of each object are the same (numerator of 2, denominator of 5),
the variables f and g are not equal, because they refer to different locations.

This can be easily illustrated by outputting the value of f and g:

System.out.println(f);
System.out.println(g);

which will yield a result similar to

Fraction@1cc7c5
Fraction@1d4a32

This output tells us that each of the variables f and g are references for a class called “Fraction”. In
addition, each of the two objects has a distinct location (address) in memory. Note that these address
values will vary according to the conditions of the computer when it runs the code.

Thus a comparison of the two variables, f and g, should show that they are not the same, and a
statement such as

System.out.println(f == g);

would produce the output “false”.

11. Apr. 2010 Page 1 of 2

f

Fraction
num 2
den 5

g

Fraction
num 2
den 5

Classes and Objects in Java – Comparing & Displaying Objects

Comparing Objects

In order to compare objects properly, we must test the contents of their fields. This is generally done
using an instance method similar to the one used with strings, called equals.

public boolean equals (Fraction other)
{

if (this.num == other.num && this.den == other.den)
return true;

else
return false;

}

An example of using this method might begin with

if (p.equals(q)) ...

An equals method does not require all fields to be equal (although this is usually the case). The
method can apply whatever criteria we choose for equality. For example, in the case of a Fraction
class, we might consider that two objects are equal if the ratios of the num and den fields are equal
(which is a more mathematical definition of equality for two fractions).

If we do not write our own equals method, Java supplies a default version for any object we define.
Since the default version only uses the == comparison operator, it has limited value to us. To get
something more meaningful, we override the default method by writing our own method, as shown
above.

Displaying Objects

To display values, we have been using the methods print and println. These methods
automatically convert primitive values (from primitive data types such as int or double) to String
values for printing. For objects, this conversion is done by a default instance method called
toString. As previously shown, displaying an object variable using print or println will produce
the identifier of the class and the memory reference of the object.

public static void main (String[] args)
{

Fraction f = new Fraction(2, 3);
System.out.println(f);

}

will produce the output “Fraction@1cc7c5”.

As with other default instance methods, we can override this method with our own definition.

public String toString()
{

return num + “/” + den;
}

Now, if we were to run our program, Java would use our custom instance method toString rather than
the default. The output from the program would be “2/3”.

11. Apr. 2010 Page 2 of 2

