
Decisions in Java – IF Statements

Boolean Values & Variables

In order to make decisions, Java uses the concept of true and false, which are boolean values.

Just as is the case with other primitive data types, we can create boolean variables to hold these

values.

boolean readyToProgram = true;

Boolean Expressions

A boolean expression is similar to a mathematical expression, except that the result is true or false,

rather than a numeric value. To create a boolean expression, we use the relational operators to

compare the values of various data types, such as integers, floats, characters, or strings, using a

relational expression.

Relational Operator Meaning Example Result
== is equal to 5 == 5 TRUE
!= is not equal to 5 != 5 FALSE
< is less than 3 < 7 TRUE
<= is less than or equal to 4 <= 4 TRUE
> is greater than 3 > 7 FALSE
>= is greater than or equal to 7 >= 3 TRUE

The following rules apply to the use of relational operators with different data types:

 1. Values of any of the primitive numeric data types (e.g., int, float, and all their variations) can be

used with any of the relational operators.

 2. Boolean values can only be tested as “equal to” or “not equal to”.

 3. Values of type char are ordered according to the Unicode encoding system. A character the

occurs earlier in the system is “less than” a character that occurs later in the system.

 a) For alphabetic characters, this means that 'a' is less than 'z', and 'A' is less than 'Z', as

expected.

 b) In the Unicode system, all uppercase letters occur earlier than all lowercase letters. Thus

we get the relational ordering of:
'A' < 'B' < 'C' < ... < 'Z' < 'a' < 'b' < 'c' < ... <'z'

 c) Representing numbers as characters, such as when you type on a keyboard, keeps the

same ordering, so that '0' < '1' < '2' < ... < '9'.

Page 1 of 4

Decisions in Java – IF Statements

Comparing Strings

The relational operators used with the primitive data types should not be used to compare strings.

Recall that a String variable does not actually contain the string, but only the location (address) of

the string in memory. Thus any comparison between strings using relational operators would actually

be comparing two addresses, rather than the String values.

Java provides a number of methods for comparing strings, but for now we will introduce only the

equals method. This is a String method, which means it can be called from any String variable.

For example, given the declaration

String s = “Same”;

then the equals method would yield the following results:

a) s.equals(“Same”) will return true

b) s.equals(“same”) will return false because 'S' is not equal to 's'

c) s.equals(“Same “) will return false because of the spaces at the end of the word

Boolean Operators

It is possible to combine two or more boolean values, variables, or expressions into a more

complicated boolean expression using the boolean operators. Unlike the relational operators, the

boolean operators can only work on boolean values. You can use a relational operator to compare

any data type, which forms a boolean expression. Multiple boolean expressions can be combined

using boolean operators.

The boolean operators are summarized in the following table.

boolean value not p p AND q p OR q
p q !p p && q p || q

TRUE TRUE FALSE TRUE TRUE
TRUE FALSE FALSE FALSE TRUE
FALSE TRUE TRUE FALSE TRUE
FALSE FALSE TRUE FALSE TRUE

Page 2 of 4

Decisions in Java – IF Statements

1. !p (not p) has the true/false value opposite to p.

2. p && q (p AND q) is true if and only if both p and q are both true.

3. p || q (p OR q) is true if p is true, q is true, or both p and q are true.

One Choice – IF-THEN Statements

if (<boolean expression>)
{

<statements>
}

The simplest decision is to choose between doing something, or doing nothing. In this general code

outline, the <boolean expression> may be quite simple or very sophisticated. Similarly, the

<statements> could be a single line of Java code, or a very complicated block of code.

Nonetheless, there is a single decision here – if the boolean expression evaluates to true, the

statements will be executed. If the expression is false, no code from this block is executed.

Two Choices – IF-THEN-ELSE Statements

Rather than doing nothing, it is far more common to use our decision to choose between two possible

options – one for true, one for false. The additional code, for the false condition, is placed within

the else block of the statement. This is the most commonly occurring decision statement.

class IfDemo
{
 public static void main (String[] args)
 {
 System.out.print("Please give one integer: ");
 int first = In.getInt();
 System.out.print("and a second: ");
 int second = In.getInt();

 if (first == second)
 {
 System.out.println("The values are equal");
 }
 else
 {
 System.out.println("The values are not equal");
 }
 }
}

Page 3 of 4

Decisions in Java – IF Statements

Many Choices – Nested IF Statements

It is possible to make more than two choices with multiple if statements:

if (x < 0)
{

System.out.println(“value is negative);
}
if (x > 0)
{

System.out.println(“value is positive);
}
if (x == 0)
{

System.out.println(“value is zero);
}

This code involves three tests, which may not seem significant now, but inefficient testing of conditions

is one of the major sources of slow and inefficient programs. The following code improves the

efficiency by reducing the code to a maximum of two comparisons using nesting.

if (x < 0)
{

System.out.println(“value is negative);
}
else
{

if (x > 0)
{

System.out.println(“value is positive);
}
else
{

System.out.println(“value is zero);
}

}

An alternate format is also available which has a more linear appearance than the nested code.

if (x < 0)
{

System.out.println(“value is negative);
}
else if (x > 0)
{

System.out.println(“value is positive);
}
else // (x == 0) is the only remaining option
{

System.out.println(“value is zero);
}

Page 4 of 4

