
Decisions in Java – Nested IF Statements

Several Actions – The Nested if Statement

We have already explored using the if statement to choose a single action (vs no action), or to choose

between two actions. It is also possible to choose between several actions (3 or more) using the if

statement.

The most basic, and straightforward, way to accomplish this is using multiple if statements.

Example 1 – Determine whether a value is negative, positive, or zero.

Although this code works, it isn't very efficient because it always performs three comparisons. A more

efficient way of writing the same code involves putting one if statement inside another.

This code takes some getting used to, but it is more efficient. When x is negative, only one

comparison is needed (is x < 0?). If the first comparison is false, only one more is required to

distinguish between positive and zero, so there will be a maximum of two comparisons. It seems

trivial when the programming is this simple, but for programs running thousands of lines of code,

millions of times over, it can make the difference between fast and slow performance.

Page 1 of 7

if (x < 0)
{

System.out.println(x + " is negative");
}
if (x > 0)
{

System.out.println(x + " is positive");
}
if (x == 0)
{

System.out.println(x + " is zero");
}

if (x < 0)
{

System.out.println(x + " is negative");
}
else
{

if (x > 0)
{

System.out.println(x + " is positive");
}
else
{

System.out.println(x + " is zero");
}

}

Decisions in Java – Nested IF Statements

Example 2 – Given three values, x, y, and z, determine the largest value and assign this value to the

variable largest.

Page 2 of 7

x < 0?

x is
negative

x is
positive

false

true x > 0?

x is
zero

true false

if (x >= y)
{

// y is eliminated, largest must be x or z
if (x >= z)
{

largest = x;
}
else
{

largest = z;
}

}
else
{

// x is eliminated, largest must be y or z
if (y >= z)
{

largest = y;
}
else
{

largest = z;
}

}

Decisions in Java – Nested IF Statements

In the examples shown so far, we have followed the indentation pattern consistent with our previous

code. As nesting gets deeper and deeper, our code will continue to shift to the right, which threatens

to make our code unreadable. To address this issue, Java offers a more condensed option which

makes better use of space, and is also easy to read.

Example 3 – This fragment of code prints a message depending upon the letter grade contained in a

char variable called grade.

Page 3 of 7

if (grade == 'A')
{

System.out.println("Excellent!");
}
else if (grade == 'B')
{

System.out.println("Good!");
}
else if (grade == 'C')
{

System.out.println("Average.");
}
else if (grade == 'D')
{

System.out.println("Poor.");
}
else if (grade == 'F')
{

System.out.println("Need help!");
}
else
{

System.out.println("Invalid grade.");
}

Decisions in Java – Nested IF Statements

Exercises

 1. Simplify the following sequence by nesting so that the effect is the same, but fewer comparisons
are required. You may want to incorporate this code into a full program for testing purposes.
if (temperature > maxTemp)
{

System.out.println("Porridge is too hot.");
}
if (temperature < minTemp)
{

System.out.println("Porridge is too cold.");
}
if (temperature >= minTemp && temperature <= maxTemp)
{

System.out.println("Porridge is just right.");
}

 2. Consider the following statement:
if (age < minAge)
{

if (income > minIncome)
{

System.out.println("Accepted");
}
else
{
System.out.println("Rejected");
}

}

What will the statement print if

(a) age > minAge and income < minIncome?
(b) age < minAge and income < minIncome?

 3. Using nested if statements, write a fragment of code that prints the smallest value
contained in the variables a, b, and c.

 4. Write a fragment of code that tests the value of the variable item. If the value is negative,
it adds the value to negativeSum. If the value is positive, it adds the value to
positiveSum. If the value is zero, increase the variable zeroCount by one.

Page 4 of 7

Decisions in Java – Nested IF Statements

 5. Assume that the following declarations have been made:

int year;
boolean isLeapYear;

Write a fragment that will assign isLeapYear to true if year represents a leap year and
false otherwise.

Note: The simplest definition of a leap year is any year that is divisible by four. For a
challenge, you could research the full definition of a leap year and create a fragment to
detect a proper leap year.

Page 5 of 7

Decisions in Java – Nested IF Statements

Solutions

1. if (temperature > maxTemp)
{

System.out.println("Porridge is too hot.");
}
else
{
 if (temperature < minTemp)

{
System.out.println("Porridge is too cold.");

}
else
{

System.out.println("Porridge is just right.");
}

}

2. (a) nothing is printed
(b) “Rejected” is printed

3. if (a < b)
{

// the smallest must be a or c
if (a < c)
{

System.out.println(a + " is the smallest value");
}
else
{

System.out.println(c + " is the smallest value");
}

}
else
{

// the smallest must be b or c
if (b < c)
{

System.out.println(b + " is the smallest value");
}
else
{

System.out.println(c + " is the smallest value");
}

}

Page 6 of 7

Decisions in Java – Nested IF Statements

4. if (item < 0)
{

negativeSum = negativeSum + item;
}
else if (item > 0)
{

positiveSum = positiveSum + item;
}
else
{

zeroCount = zeroCount + 1;
}

Page 7 of 7

