
Repetition using Java – Loops

Repetition is a programming concept that allows the computer to run one or more commands multiple

times, without having to write them out each time. Instead, the commands are placed inside a looping

structure, where they will be executed over and over, until some condition is met (i.e., becomes true).

Consider an example from cooking, where we have to stir a gravy until all of the lumps are gone.

Using pseudocode, the instructions might look like

while (there are lumps in the gravy)
give the gravy a stir

end while

The idea is to keep checking for lumps. If there are still lumps, stir the gravy. If the lumps are gone,

the loop ends.

The While Loop – Decision at the Beginning

The execution of a while loop is similar to the execution of a simple if statement. A condition is

checked on the first line (true or false). If the condition is true, we enter the loop and execute any

commands found within the body of the loop. If the condition is false, we exit the loop without

executing any commands.

if (<boolean expression>)
{

<statements>
}

while (<boolean expression>)
{

<statements>
}

In other words, the while loop is like an if statement that keeps repeating while the

boolean expression is true.

We can also represent a while loop using a flowchart, as we did with if-else statements.

2. Nov. 2010 Page 1 of 8

Evaluate
<expression>

Execute
<statement>

false

true

Repetition using Java – Loops

Example 1 – ask the user for integer values, and then outputs the square of the value. Continues to

do this until the user enters zero, which causes the loop to exit.

class PrintSquares
{
 public static void main (String[] args)
 {
 System.out.print("Give an integer (zero to stop): ");
 int value = In.getInt();
 while (value != 0)
 {
 System.out.println(value + " " + value*value);
 System.out.print("Next integer (zero to stop): ");
 value = In.getInt();
 }
 }
}

Some important notes about this program:

1. It is necessary to initialize the variable value before testing the condition of the while loop.

Otherwise, value would have been undefined when the loop was first checked, and an error

would occur.

2. There must be some way within the loop that will eventually cause the loop to exit. In this

case, we keep asking the user for a new value, and we will exit when value is zero. We say

zero acts as the sentinel value for this loop.

3. If there is no sentinel value, or if there is no way to set the sentinel value, the loop will never

end. This results in an infinite loop, which must be terminated from the operating system of

your computer. This is almost always a programmer error.

4. If the first value entered in the program were zero (the sentinel value), the contents of the loop

would never execute.

2. Nov. 2010 Page 2 of 8

Repetition using Java – Loops

Example 2 – Find the sum of a set of values as they are entered one at a time.

class AddMarks
{
 public static void main (String [] args)
 {
 /**
 * This program reads the marks obtained for a
 * student on an exam and finds the average mark.
 * It prints the average mark, rounded to the
 * nearest integer.
 **/

 System.out.println("Submit marks (value < 0 to stop");
 int totalMarks = 0; // the sum of all marks entered
 int numberOfMarks = 0; // the number of marks entered so far
 int nextMark = In.getInt();

 while (nextMark >= 0)
 {
 totalMarks += nextMark;
 numberOfMarks++;
 System.out.println("Next mark:");
 nextMark = In.getInt();
 }

 if (numberOfMarks > 0)
 {
 int average = Math.round((float)totalMarks/numberOfMarks);
 System.out.println("Average for " + numberOfMarks +
 " students is " + average);
 }
 }
}

In this program, the initialization includes both setting the variables totalMarks and

numberOfMarks to zero, as well as reading the initial value of nextMark. The value of nextMark is

also read inside the loop, since exiting the loop depends on nextMark being less than zero (the

sentinel value). Notice that the program only attempts to find the average if at least one mark has

been entered (which prevents dividing by zero if no marks are entered).

2. Nov. 2010 Page 3 of 8

Repetition using Java – Loops

Exercises

1. What is the minimum number of times that the body of a while statement can be executed?

2. What is the maximum number of times that the body of a while statement can be executed?

3. What will be printed by this fragment? Determine your answer on paper before you check the

answer by running a program (Note: you can test this code by copying and pasting into the

Interactions Pane in DrJava).

int m = 10;
int n = 0;
while (m > n)
{

System.out.println(m + " " + n);
m--;
n += 2;

}

4. Write a program that asks the user for an integer sentinel value which will be used to end the

program. Once you have the sentinel value, repeatedly ask the user for integer values until they

give a value higher than the sentinel value.

5. Write a program that will calculate the sum of the first N positive integers, where N is a value input

by the user. For example, if the user were to input 3, the answer would be 6 (1 + 2 + 3 = 6). The

output should be something like:

"The sum of the first 3 integers is 6"

6. Write a program that prints the square root of each (double) number input by the user. It will

continue to ask for new numbers until a negative value is input by the user, which should end the

program. While the program is running, the output and input might look as follows:

Sample Output Input
Enter a positive number (or a negative number to quit): 49
The square root of 49 is 7
Enter another positive number (or a negative to quit): 3.14159
The square root of 3.14159 is 1.77245
Enter another positive number (or a negative to quit): -1

2. Nov. 2010 Page 4 of 8

Repetition using Java – Loops

7. Write a program that prompts the user for a sequence of integers using zero as a sentinel. The

program should count the number of times that consecutive values are equal. For example, if the

input is

 3 6 7 7 4 4 4 6 0

then the program should determine that there are three cases in which consecutive values are

equal.

2. Nov. 2010 Page 5 of 8

Repetition using Java – Loops

Solutions

1. Zero, if the condition is false before the loop is ever entered
2. Infinite, if the condition is always true (an infinite loop is almost always a programmer error)
3. This example gives a good opportunity to perform a manual walkthrough of the code. A

walkthrough is where you go through the code by hand (i.e., pencil and paper), keeping track of
the important variables and other important events. For example:

m n m > n output
10 0 TRUE 10 0
9 2 TRUE 9 2
8 4 TRUE 8 4
7 6 TRUE 7 6
6 8 FALSE

Therefore, the output would be:

10 0
9 2
8 4
7 6

4. class WhileLoopsExercise4
{
 public static void main (String [] args)
 {
 int sentinel;
 int input;

 System.out.println("What is the sentinel value?");
 sentinel = In.getInt();

 System.out.println("Enter a value (" + sentinel + " to stop)");
 input = In.getInt();

 while (input != sentinel)
 {
 System.out.println("Enter a value (" + sentinel + " to stop)");
 input = In.getInt();
 }
 System.out.println("End of program...");
 }
}

2. Nov. 2010 Page 6 of 8

Repetition using Java – Loops

5. class WhileLoopsExercise5
{
 public static void main (String [] args)
 {
 int maxN;
 int sum = 0;
 int currentN = 1; // start from 1

 System.out.println("Enter a positive integer value");
 maxN = In.getInt();

 while (currentN <= maxN)
 {
 sum = sum + currentN;
 currentN++;
 }

 System.out.println("The sum of the first " + maxN
 + " integers is " + sum);
 }
}

If the user enters a negative number, or zero, the program will enter an infinite loop. It is
possible to improve the program in several ways, one of which is shown below.

class WhileLoopsExercise5
{
 public static void main (String [] args)
 {
 int maxN;
 int sum = 0;
 int currentN = 1; // start from 1

 System.out.println("Enter a positive integer value");
 maxN = In.getInt();

 if (maxN >= 1)
 {
 while (currentN <= maxN)
 {
 sum = sum + currentN;
 currentN++;
 }

 System.out.println("The sum of the first " + maxN
 + " integers is " + sum);
 }
 else
 {
 System.out.println("Error: " + maxN +
 " is not a positive integer!");
 }
 }
}

2. Nov. 2010 Page 7 of 8

Repetition using Java – Loops

6. class WhileLoopsExercise6
{
 public static void main (String [] args)
 {
 double number; // user input
 double root; // calculated square root

 System.out.println("Enter a positive number (or negative to quit)");
 number = In.getFloat();

 while (number >= 0)
 {
 root = Math.sqrt(number);
 System.out.println("The square root of " + number + " is " + root);
 System.out.println("Enter a positive number (or negative to quit)");
 number = In.getFloat();
 }
 }
}

7. class WhileLoopsExercise7
{
 public static void main (String [] args)
 {
 int number; // user input
 int previousNumber = 0;
 int count = 0; // track number of consecutive occurrences

 System.out.println("Enter an integer value (or zero to quit");
 number = In.getInt();

 // if the user enters zero right away, we never enter the loop
 while (number != 0)
 {
 previousNumber = number;
 System.out.println("Enter an integer value (or zero to quit");
 number = In.getInt();
 if (number == previousNumber)
 {
 count++;
 }
 }
 System.out.println("There were " + count +
 " occurrences of consecutive numbers");
 }
}

2. Nov. 2010 Page 8 of 8

