
Searching & Sorting in Java – Binary Search

If the data you wish to search is already in order, a sequential search will still, on average, take the same
amount of time to find the item you want. It is possible, however, to greatly improve the speed of a search
on sorted data.

The binary search algorithm is one such way to improve performance using sorted data. This algorithm is
an example of a divide and conquer algorithm, of which there are many other examples. This type of
algorithm solves a problem by quickly reducing its size. For the binary search, at each stage of the problem
we cut the size of the problem roughly in half.

To illustrate, consider the following list, and suppose we are searching for the value 47.

16 19 22 24 27 29 37 40 43 44 47 52 56 60 64
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

To start the process, we initially examine the item in the middle of the array. The middle item, 40, is not the
one we want, but it is less than the value we are looking for. Since the list is sorted, we use this information
to eliminate all of the items in the lower half of the list. Our search now only looks at the remaining (upper)
half of the list.

16 19 22 24 27 29 37 40 43 44 47 52 56 60 64
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

We repeat our strategy on these items. The middle value is now 52, which is too high, so we eliminate the
upper half of the remaining list.

16 19 22 24 27 29 37 40 43 44 47 52 56 60 64
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The middle value is now 44, which is too small. Eliminating everything below this value leaves us with only
a single item that hasn't been eliminated, which is the location of our target value.

16 19 22 24 27 29 37 40 43 44 47 52 56 60 64
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

To implement this algorithm in Java, we will search for item in an array called list. Through the process
of elimination, the upper and lower bounds of the array that we need to search will change, so we will track
them with int variables called top and bottom. Similarly, we need to track the middle value, also an
int.

For each iteration, we can find the value of middle by taking the average of the top and bottom. If the value
at middle is equal to item, then obviously our search is done. If our value is too low, the bottom becomes
middle + 1. If our value is too high, the top becomes middle - 1.

If our search value is not in the list, this process will continue until bottom and top and middle are all equal to
each other (i.e., we are looking at a single element of the array). On the next step, top or bottom will change
such that top < bottom, which signals the end of our search, at which point we return a value to indicate a
failure (-1).

8. Dec. 2010 Page 1 of 5

Searching & Sorting in Java – Binary Search

public static int binSearch (double[] list, double item)
{

int bottom = 0; // lower bound of searching
int top = list.length – 1; // upper bound of searching
int middle; // current search candidate
boolean found = false;
int location = -1; // location of item, -1 for failure

while (bottom <= top && !found)
{

middle = (bottom + top)/2; // integer division, auto-truncate
if (list[middle] == item)
{

location = middle; // success!
found = true;

}
else if (list[middle] < item)
{

bottom = middle + 1; // look only in top half
}
else
{

top = middle – 1; // look only in bottom half
}

}
return location;

}

Suppose we want to perform a binary search for the value 75 on the following data.

12 34 47 62 75 87 90

Initially, we need to search the entire array, so bottom and top are set to 0 and 6, while middle is set to 3.

bottom middle top
0 3 6

12 34 47 62 75 87 90
0 1 2 3 4 5 6

Since 62 < 75, the item we are seeking cannot be in the left half of the array. We discard this half by setting
bottom to middle + 1 = 4. The middle of the remaining interval is (4 + 6)/2 = 5.

8. Dec. 2010 Page 2 of 5

Searching & Sorting in Java – Binary Search

bottom middle top
4 5 6

12 34 47 62 75 87 90
0 1 2 3 4 5 6

Since 87 > 75, the value 75 cannot be in the upper half of the sublist, so we discard it by setting top to
middle - 1 = 4. The new value of middle will be (4 + 4)/2 = 4.

bottom middle top
4 4 4

12 34 47 62 75 87 90
0 1 2 3 4 5 6

Once the value has been found at middle, the search ends successfully.

Now let us consider a failed search, were the final element was not equal to our search value.

bottom middle top
4 4 4

12 34 47 62 80 87 90
0 1 2 3 4 5 6

Since 80 > 75, the value 75 cannot be in the upper half of the sublist, so we discard it by setting top to
middle - 1 = 3. Now we have the situation where top < bottom, so our searching ends without a
successful result.

8. Dec. 2010 Page 3 of 5

Searching & Sorting in Java – Binary Search

Note: The Java libraries include methods for sorting arrays of any primitive type (int, long, float, double,
char), or even objects (e.g., String). These methods are overloaded, which means they can be called using
the same method name, sort. Since they are part of the Arrays class, the call will be:

Arrays.sort(<array name>);

For example, consider the following arrays (integers and strings) which are sorted using sort.

int[] numbers = {4, 3, 5, 6, 7, 4, 8, 3, 4, 1};
String[] names = {"Ed", "Bob", "Alice", "Rob", "Gayle"};
Array.sort(numbers);
Array.sort(names);

In order to use methods from the Arrays class, we must import the library into our current program. A full
program, including the required import statement, is shown below. Notice that the import must come before
the class declaration.

Also included is a method, toString, which allows the array to be easily displayed on a single line (if it is
short enough).

import java.util.Arrays;
public class ArraySortJavaLib {

 public static void main(String[] args)
 {
 //... 1. Sort strings - or any other Comparable objects.
 String[] names = {"Zoe", "Alison", "David"};
 Arrays.sort(names);
 System.out.println(Arrays.toString(names));
 //... 2. Sort doubles or other primitives.
 double[] lengths = {120.0, 0.5, 0.0, 999.0, 77.3};
 Arrays.sort(lengths);
 System.out.println(Arrays.toString(lengths));
 }
}

8. Dec. 2010 Page 4 of 5

Searching & Sorting in Java – Binary Search

Exercises

1. Suppose that an array contains the following elements.

23 27 30 34 41 49 51 55 57 60 67 72 78 83 96
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Trace the execution of the method binSearch shown in this section as it searches for the following
values of item. In each trace, show the progress of the search by using diagrams similar to those in
previous examples.

(a) 72 (b) 41 (c) 62

2. What changes would have to be made to binSearch so that it will search an array in descending order?

3. Rewrite binSearch so that, if a search is unsuccessful, the method will return the index of the value
nearest to item, instead of returning -1. If there is a tie, return the smaller index.

4. What is the maximum number of comparisons that might be necessary to perform a binary search on a
list containing seven items?

5. Repeat the previous question for lists with indicated sizes.
(a) 3
(b) 15

(c) 31
(d) 63

(e) 100
(f) 500

(g) 1000
(h) 10000

8. Dec. 2010 Page 5 of 5

