$\qquad$

Yesterday we reviewed the transformations that you studied in grade 10 .
Recall: Reflection along the $x$-axis: $y=a x^{2}, \quad a<0$ or in function notation: $y=a f(x)$, where $f(x)=x^{2}$.

Vertical Scaling: $y=a x^{2}, a>0$ or in function notation: $y=a f(x)$, where $f(x)=x^{2}$. vertical stretch: $a>1$ (parabola gets skinnier) or vertical compression: $0<a<1$ (parabola becomes wider)

Vertical Translation: $y=x^{2}+q$ or in function notation: $y=f(x)+q$, where $f(x)=x^{2}$. vertical shift up: $q>0 \quad$ (parabola moves up) or vertical shift down: $q<0$ (parabola moves down)

Horizontal Translation: $y=(x-p)^{2}$ or in function notation: $y=f(x-p)$, where $f(x)=x^{2}$. horizontal shift right: $p>0$, like in $y=(x-3)^{2}$ or horizontal shift left: $p<0$, like in $y=(x+2)^{2}$

Ex: State the transformations, in the appropriate order, that $y=f(x)$ has undergone to obtain $y=f(x-1)+3$

Using the example above, what if the parent function is a quadratic? Then $f(x)=x^{2}$.
Sketch the transformed parabola on the grid below.
(Use a table of values if you want to!)


What if the parent function is a set of ordered pairs? If $f(x)=\{(1,2),(2,-3),(-5,7)\}$ ?
What would $y=f(x-1)+3$ be?
(Use a table of values and/or graph if you want to!)

What if the parent function is the square root function? Then $f(x)=\sqrt{x}$. What would $y=f(x-1)+3$ be? (Use a table of values and/or graph if you want to!)


What if the parent function is the reciprocal function?
Then $f(x)=\frac{1}{x}$. What would $y=f(x-1)+3$ be?
(Use a table of values and/or graph if you want to!)


Ex: Given $y=2 f(x)+3$ describe the transformations and apply them to the square root function. (Use a table of values and/or graph if you want to!)


Ex: Given $y=0.4 f(x+1)$ describe the transformations and apply them to the reciprocal function.
(Use a table of values and/or graph if you want to!)

Ex: The graph on the right shows the function $y=f(x)$. Given $y=-f(x+1)-2$, describe the transformations and apply them to the function (Use a table of values with the key points, if you want to!)


Ex: The graph on the right shows the function $y=f(x)$. Given $y=2 f(x)-1$, describe the transformations and apply them to the function. (Use a table of values with the key points, if you want to!)


Ex: The graph on the right shows the function $f(x)=\sqrt{16-x^{2}}$. Given $y=-0.5 f(x+2)$, describe the transformations and apply them to the function.
(Use a table of values with the key points, if you want to!)


HW: Pg. 241 \#8b, 9b, 5abd, 4abce

