

Feb 6-3:52 PM

Ex.1 Find the equation of a parabola with roots of -4 and 18 and an optimum value of 100.

$$y = a(x-s)(x-t) \quad \text{roots } s,t$$

$$y = a(x+4)(x-18)$$
optimum value is the yvertex

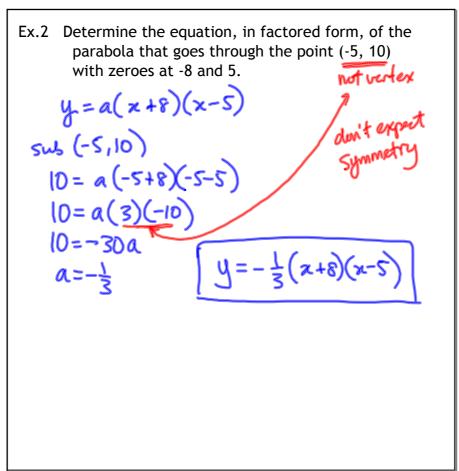
$$x_{vertex} \text{ is MP of zeroes}$$

$$x_{v} = \frac{-4+18}{2}$$

$$= \frac{14}{2}$$

$$= \frac{1}{2}$$

$$= \frac{1}{2}$$
Vertex is $(7,100)$, Sub point
$$100 = a(7+4)(7-18)$$


$$100 = a(11)(-11)$$

$$numbers same but apposite sign ble MP is same distance from each zero
$$100 = -121 \text{ a}$$

$$a = -\frac{100}{121}$$

$$y = -\frac{150}{121}(x+4)(x-18)$$$$

Feb 12-9:14 PM

Feb 12-9:15 PM

Ex.3 Determine the equation (in factored form) of a quadratic which has x-intercepts -2 and 4 and a y-intercept of -5.

$$y = a(x+2)(x-4) \qquad (0_1-5)$$

$$y = a(x+2)(x-4) \qquad (0_1-5)$$

$$y = a(x+2)(x-4) \qquad (0_1-5)$$

$$y = a(x+2)(x-4)$$

Ex.4 Determine the equation of the quadratic relation, in standard form, that passes through
$$(2, 5)$$
 and has roots of $1+\sqrt{5}$ and $1-\sqrt{5}$.

$$y = A(x-3)(x-1) = 1+\sqrt{5}$$

$$y = A(x-1)(x-1) = 1+\sqrt{5}$$

$$y = A(x-1-\sqrt{5})(x-1+\sqrt{5})$$

$$y = A(x-1-\sqrt{$$

Feb 12-9:16 PM

Assigned Work:

worksheet photocopies from Nelson text (p.326 # 6, 18)