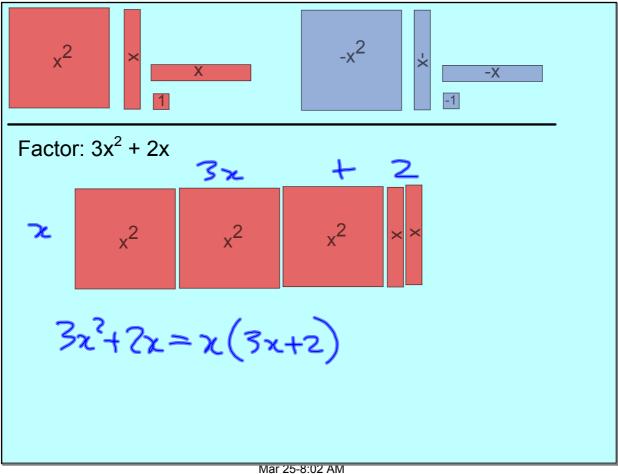
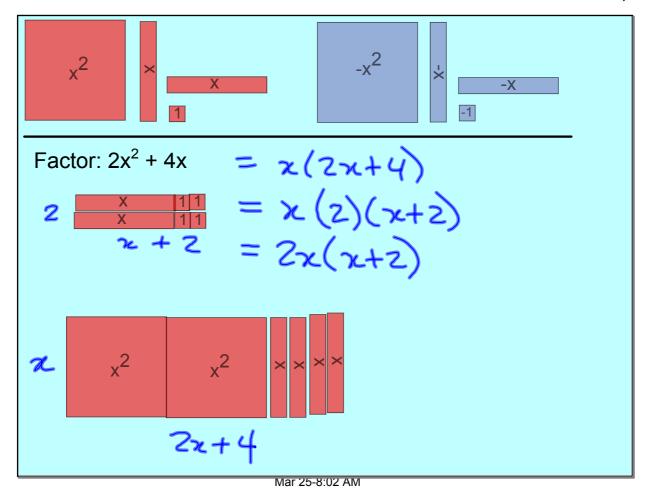
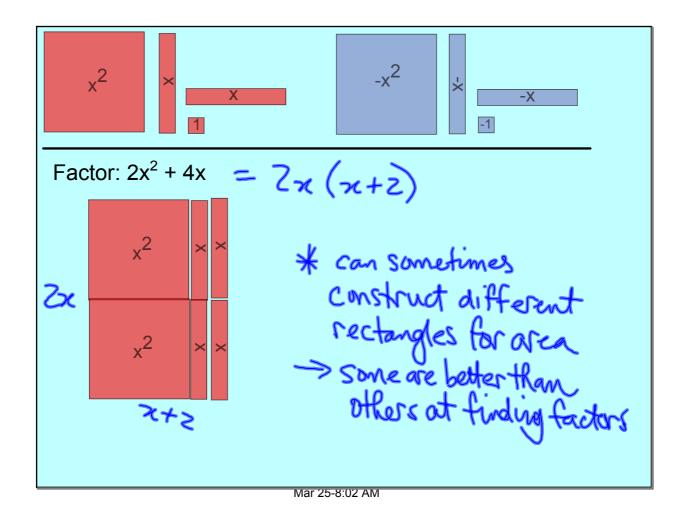
Factoring using Common Factors


march 30/2010


1. Using a Model (e.g., alge-tiles)


Model the expression as an <u>area</u>. The lengths of the sides are factors.

Some factors can be reduced further. Repeat this process until no factors can be reduced.

Mar 26-8:24 AM

2. Factor Algebraically

Look for the <u>greatest common factor</u> of the coefficients and the <u>GCF</u> of the variables.

Ex. Factor:
$$8x^3 - 6x^2y^2 + 4x^2y$$

The GCF of 8, 6, and 4 is _____.

The GCF of x^3 , x^2y^2 , and x^2y is _____.

 $x^3 = 3x^2y^2 + 4x^2y = 2x^2(4x) - 2x^2(3y^2) + 2x^2(2y)$
 $2x^2(4x - 2y^2 + 2y^2) = 2x^2(4x - 2y^2) + 2x^2(2y)$

Mar 26-8:24 AM

3. Factoring by Grouping

Some polynomials do not have common factors in all terms. They can <u>sometimes</u> be factored by <u>grouping</u> terms with common factors.

Ex. Factor:
$$ac + bc + ad + bd$$

$$= c(a+b) + d(a+b)$$

$$= (a+b) + d(a+b)$$

$$= (a+b)(c+d)$$

$$= a(c+d) + bd$$

$$= a(c+d) + b(c+d)$$

$$= (c+d)(a+b)$$

Mar 26-8:24 AM

Assigned Work:

Handout Section 3.4

- Complete in class & submit/show:
 # (1-4)(abc)
- 2. Homework # (1-4)(rest)

$$9a^{3} + 27b^{2}$$

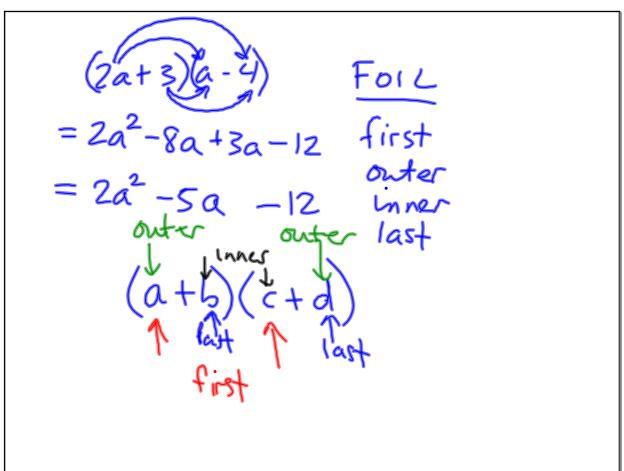
$$= 3(3a^{3} + 9b^{2})$$

$$= 3(3)(a^{3} + 3b^{2})$$

$$= 9(a^{3} + 3b^{2})$$

Mar 26-9:06 AM

$$5 \times + 75$$


$$= 5 \left(\frac{5 \times + 25}{5} \right)$$

$$= 4 \cdot \left(\frac{12y - 8y^2 + 24y^3}{4y + 24y^3} \right)$$

$$= 4y \left(\frac{12y - 8y^2 + 24y^3}{4y + 24y^3} \right)$$

$$= 4y \left(\frac{12y - 8y^2 + 24y^3}{4y + 24y^3} \right)$$

$$= 4y \left(\frac{3 - 2y + 6y^2}{4y + 24y^3} \right)$$

