Vertex Form by Completing the Square

May 4/2010

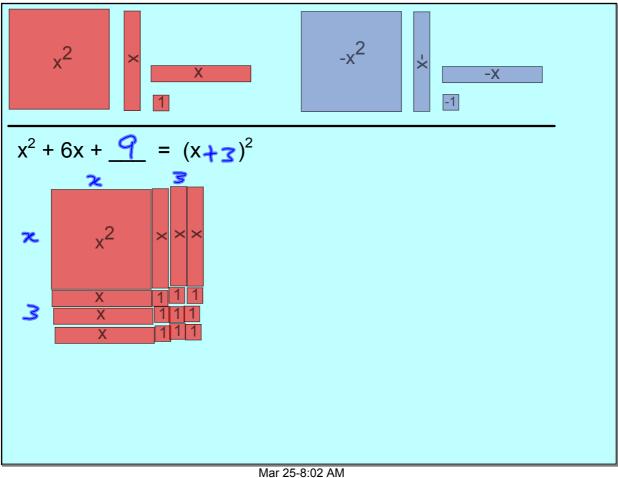
How can we find the vertex of a quadratic relation in standard form, $y = ax^2 + bx + c$?

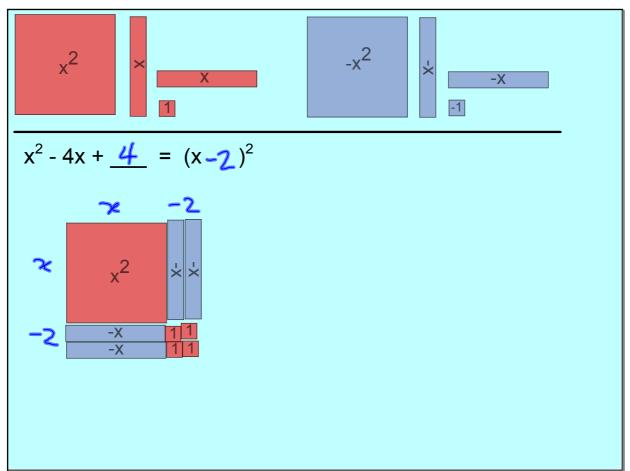
- 1. Factored Form → Find zeroes \longrightarrow Symmetry to find x_v
- 2. Partial Factoring —— sub y-intercept find matching point \longrightarrow symmetry to find x_{v}

or,

3. Complete the Square —— Vertex Form

May 2-4:13 PM





Mar 25-8:02 AM

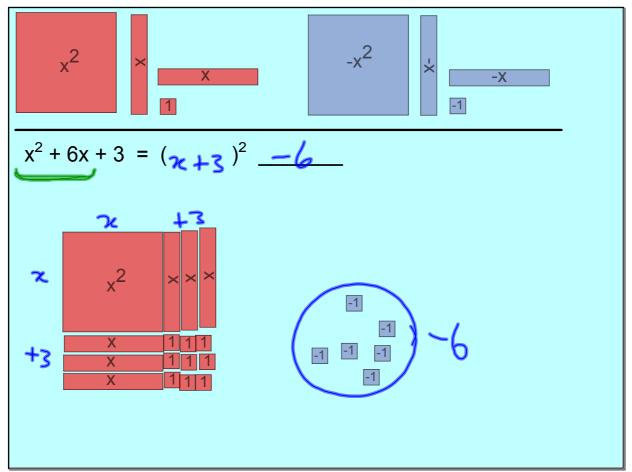
Recall vertex form: $y = a(x - h)^2 + k$

Note that $(x - h)^2$ is a <u>perfect square</u>. What is missing from these perfect squares?

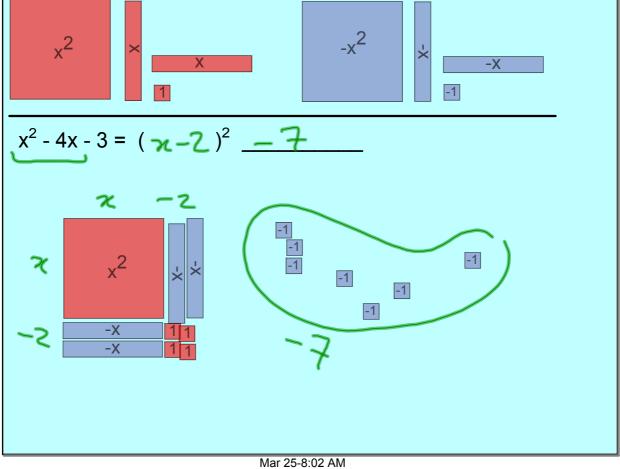
(a)
$$x^2 + 10x + 25 = (x + 5)^2$$

(b)
$$x^2 - 18x + 8 = (x - 9)^2$$

 $-\frac{18}{2} = -9$ $(-9)^2 = 81$



Mar 25-8:02 AM



To go from standard form to vertex form, we force a perfect square into our equation.

(c)
$$y = x^2 + 12x - 7$$

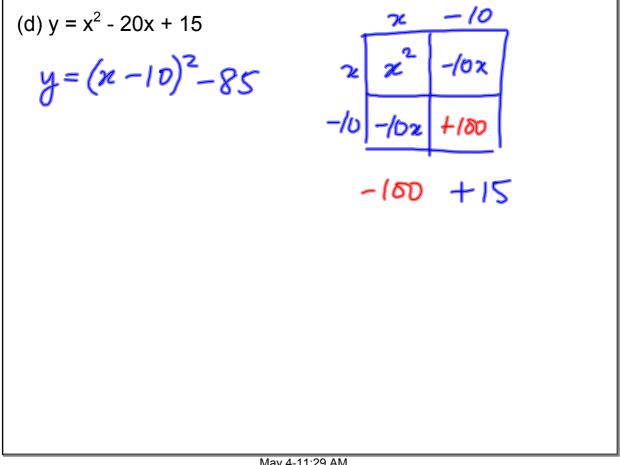
make a perfect square

 $y = (x^2 + 12x + 36) - 36 - 7$

Perfect square

 $y = (x + 6)^2 - 43$
 $y = (x + 6)^2 - 43$
 $y = (x + 6)^2 - 43$
 $y = (x + 6)^2 - 43$

May 3-7:51 PM



If the value in front of x^2 is <u>not</u> 1 (the 'a' term), we must factor that number out of <u>all x terms</u>.

(e)
$$y = 3x^2 + 12x + 11$$

 $y = 3(x^2 + 4x + 4 - 4) + 11$
 $y = 3(x^2 + 4x + 4 - 4) + 11$
 $y = 3(x+2)^2 - 4 + 11$
 $y = 3(x+2)^2 - 12 + 11$
 $y = 3(x+2)^2 - 1$
(f) $y = -x^2 + 6x + 13$

May 4-8:48 AM

Assigned Work:

p. 390 # 1, 2, 4, 9, 10