Intro to Quadratic Relations Apr. 15 /2010				
So far: LINEAR RELATIONS	New: QUADRATIC RELATIONS			
Equation: y = mx ¹ + b	Equation: $y = ax^2 + bx + c$			
m is slope, b is y-intercept	a, b, and c are coefficients			
highest exponent of x is 1	highest exponent of x is 2 (degree, or order, of 2)			

Mar 20 - 4:17 PM

Recall: To graph a relationship, we can use a <u>table of values</u> (or TOV).

- 1. Pick some values for x.
- 2. Sub each x-value into the equation.
- 3. Determine values for y.
- 4. Plot each point (x, y) on the x-y plane.

Ex.1. Create a TOV for y = 2x + 1

Х	y = 2x + 1	$\Delta y = y_2 - y_1$
-2	2(-2)+1=-3	
	2(-1)+1=-1	(-1)- (-3) = 2
0	2(0)+1=1	1-(-1) = 2
l	Z = 1+(1) S	3-1 = 2
2	2(2)+1 = 5	5-3 = 2

'Δ' (delta) means "change in" or "difference' Δy is the change in y, or the first difference.

In a linear relationship, the first differences a

Ex.2. Create a TOV for $y = x^2$

Apr 14-7:48 PM

		,		
х	y = x ²	Δу	Δ^2 y	
-2	$(-2)^2 = 4$			
-1	$(-1)^2 = 1$	1-4=-3		
0	D2 = 0	0-1=-1	-1-(-3)=2	
	/2 = 1	1-0=1	1-(-1)=2	
2	2- = 4	4-1=3	5-1=2	
Δ²y is the change in Δy, or change in 1st differences. Δ²y is the second difference. In a quadratic relationship, first differences are and second differences are				

Apr 14-8:00 PM

Ex.4. Create a TOV and graph $y = -x^2 + 2x + 3$.

х	$y = -x^2 + 2x + 3$	Δy	Δ^2 y
-1	-(-1)2+2(-1)+3= 0		
0	$-(0)^2+2(0)+3=3$	3-0 = 3	
1	$-1^2+2(1)+3=4$	4-3=1	1-3=-2
2	-22+2(2)+3=3	3-4=-1	-1-1=-2
3	-32+5(3)+3 = Q	0-3=-3	-3-(-1)=-2

The direction of opening of the parabola can be determined from the sign of the 2nd difference:

Positive 2nd difference \Longrightarrow parabola opens $\underline{\psi}$

Negative 2nd difference parabola opens down.

Assigned Work:

p. 254 # 1 - 6, 8