Solving Quadratic Equations in Standard Form Quadratic Equations in Standard Form

Recall:

- 1. To <u>solve</u> an equation, find a value (or values) that <u>satisfy</u> the equation (i.e., make it <u>true</u>).
- 2. Standard form: $y = ax^2 + bx + c$

quadratic linear term constant term term (y-intercept)

Apr 19-7:41 PM

Case 1: no linear term $Solve x^{2} - 9 = 7$ (i) factor $x^{2} - 9 = 7$ make one side agnal b $x^{2} - 16 = 0$ diff q squares (x+4)(x-4) = 0 x=-4 dx(x=4)(ii) isolate x^{2} term $x^{2} - 9 = 7$ +9 + 9 $x^{2} = 16$ $x_{1} = 16$ $x_{2} = 16$ $x_{3} = 16$ $x_{4} = 16$ $x_{1} = 16$ $x_{2} = 16$ $x_{3} = 16$ $x_{4} = 16$ $x_{1} = 16$ $x_{2} = 16$ $x_{3} = 16$ $x_{4} = 16$ $x_{1} = 16$ $x_{2} = 16$ $x_{3} = 16$ $x_{4} = 16$ $x_{5} = 16$ $x_{1} = 16$ $x_{2} = 16$ $x_{3} = 16$ $x_{4} = 16$ $x_{5} = 16$ $x_{5} = 16$ $x_{6} = 16$ $x_{7} = 16$

Case 2: Linear term is present

(a)
$$-5x^2 + 2x + 1 = 1$$

O make one side 0 ,
and coefficient of
 x^2 should be positive

 $-5x^2 + 2x + 1 = 1$
 $-5x^2 + 2x + 1 = 1$
 $-5x^2 + 2x = 0$
 $x(5x - 2) = 0$
 $x(5x - 2) = 0$
 $x = 2$
 $x = 3$
 $x = 3$
 $x = 3$

(b)
$$x^2 - 3x + 1 = -1$$

 $+1 + 1 \Rightarrow add + b - 3$
 $x^2 - 3x + 2 = 0$
 $(x - 2)(x - 1) = 0$
 $x - 2 = 0$ or $x - 1 = 0$
 $x = 2$
 $x = 2$

(c)
$$18x - 14 = 4x^{2}$$

 $-/8x + 1/4$ $-/8x + 1/4$
 $0 = 4x^{2} - 18x + 1/4$
 $0 = 2(2x^{2} - 9x + 7)$ P: 14
 $0 = 2[2x^{2} - 7x - 2x + 7]$ T: $-7_{1} - 2$
 $0 = 2[x(2x - 7) - 1(2x - 7)]$
 $0 = 2(2x - 7)(2x - 7)$
 $2x - 7 = 0$ $x - 1 = 0$
 $2x = 7$ $x = 1$
 $x = \frac{3}{2}$

Apr 22-9:45 PM

Assigned Work:

p. 315 # 2, 3, 8abc*, 9abc*