Feb 5/2010

Review - Part 3

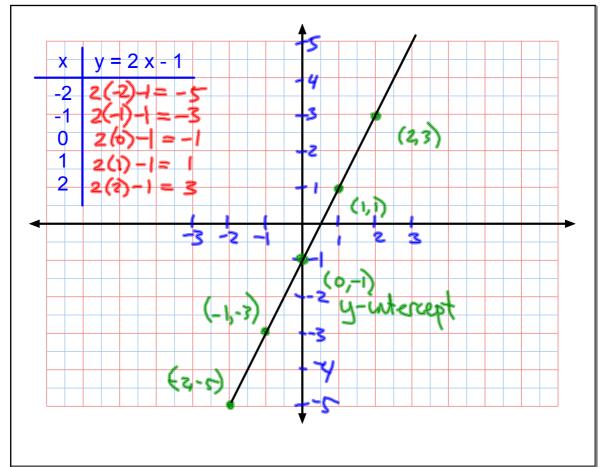
Linear Relationships

Jan 31-2:27 PM

Evaluate (2x - 1) for

a)
$$x = 0$$

b)
$$x = 1$$


c)
$$x = 2$$

a) 2(0)-1=-1

Each value of x will produce a different value for (2x - 1).

We can graph the relationship between x and (2x - 1) by letting y = 2x - 1.

Each pair (x, y) is a point on the x-y plane.

Feb 4-9:04 PM

A <u>linear relationship</u> occurs when both variables are <u>linear</u> (they have an exponent of 1).

(a)
$$y = 2 x - 1$$
 (b) $2 x - y - 1 = 0$ (c) $2 x - y = 1$

Slope-intercept Standar

It is possible to graph a linear relationship using:

- √(1) a table of values
 - (2) the y-intercept and x-intercept
 - (3) the y-intercept and the slope

To graph a straight line, only **two points** are required.

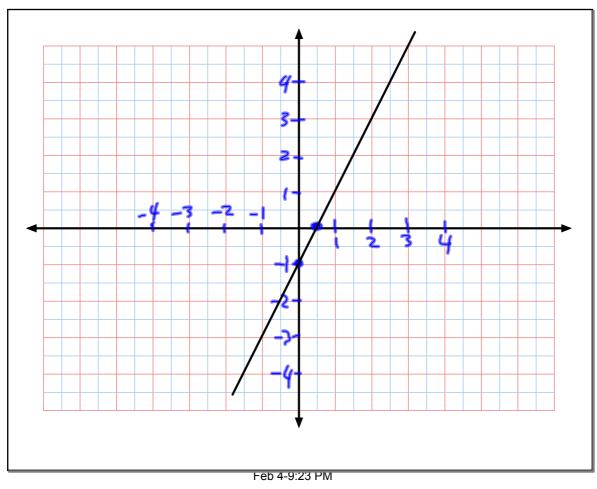
<u>Using the intercepts:</u>

The x-intercept is the <u>point</u> where the line crosses the x-axis

The y-intercept is the point where the line crosses the <u>q-axis</u>.

$$2 x - y - 1 = 0$$

$$2x - (0) - 1 = 0$$


$$+ 1 + 1$$

$$\left(\frac{1}{2}, 0\right) \quad \frac{2x}{2} = \frac{1}{2}$$

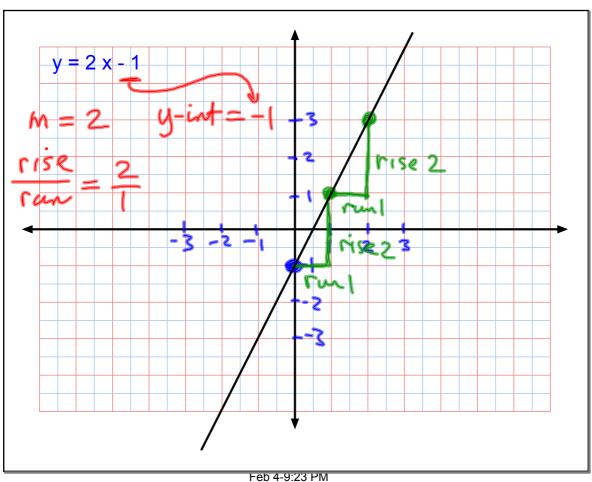
$$x = \frac{1}{2}$$

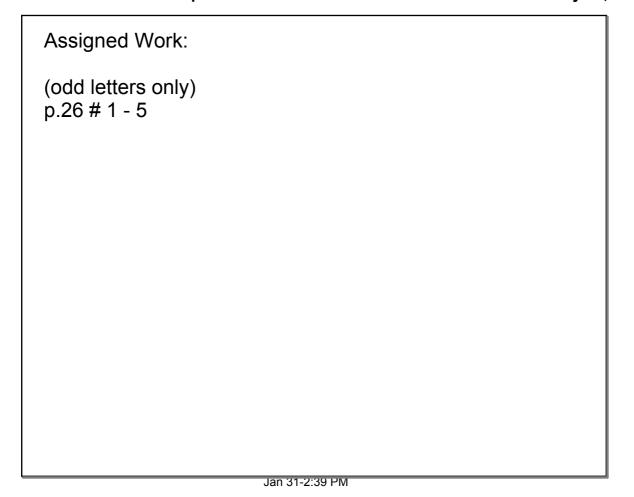
To find the x-int, set y=0 2x - (0) - 1 = 0 + 1 + 1 $\left(\frac{1}{2}, 0\right)$ $2x = \frac{1}{2}$ $x = \frac{1}{2}$ To find the y-int, set y=0 2(0) - y - 1 = 0 - y - 1 = 0 - y - 1 = 0 - y - 1 = 0 - y - 1 = 0 - y - 1 = 0

Feb 4-9:18 PM

3

<u>Using the y-intercept and slope:</u>


Recall:


m = slope =
$$\frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x}$$
 where

The y-int is our starting point, and we use the slope to find the next point.

A linear equation in slope-intercept form is

Feb 4-9:24 PM

