Solving Linear Systems by Substitution

Given y = 2x + 3, what does it mean if:

(a)
$$x = -1$$

(b)
$$y = 7$$

(a)
$$x = -1$$
 (b) $y = 7$ (c) $y = x - 1$

solve graphically

Solving Linear Systems by Substitution

Substitution is an algebraic method where we <u>replace</u> one value with an <u>equivalent amount</u>.

For example,

1 dollar = 4 quarters and 1 quarter = 5 nickels

1 dollar = 4 (5 nickels)

1 dollar = 20 nickels

Since a quarter is equivalent to 5 nickels, we can replace each quarter with 5 nickels and the equations are still valid (true).

Ex.1. Solve
$$y = 3x - 2$$
 and $y = x + 2$.

Since $y = y$
 $3x - 2 = x + 2$
 $-x + 2 - x + 2$
 $2x = 4$
 $x = 2 \rightarrow x$ -coordinate

for y , Sub $x = 2$ into

either original equation

 $y = (2) + 2$
 $y = 4$

Solution is $(2,4)$ of $y = 4$

Feb 10-9:06 PM

Ex.1. Solve
$$y = 3x - 2$$
 and $y = x + 2$.
The solution is $(2, 4)$, or $x = 2$ and $y = 4$.

To perform a <u>formal check</u> of the solution, sub these values into each equation and compare sides.

$$y = 3x - 2$$
 $y = x + 2$
 $LS = Y$ $RS = 3x - 2$ $LS = 4$
 $LS = 4$ $RS = 2 + 2$
 $= 4$ $LS = RS$

Ex.2. Solve
$$2y = x + 5$$
 and $x - 4y = 0$.

Need to write one equation as

 $y = \dots$ or $x = \dots$

2: $x - 4y = 0$
 $44y + 44y$
 $x = 4y = 0$

Sub 3 into 0

 $2y = 4y + 5$
 $-4y - 4y$
 $-2y = 5$
 $y = -\frac{5}{2}$

The solution is $\left(-10, -\frac{5}{2}\right)$

Feb 10-9:06 PM

Solving Linear Systems by Substitution

Graphically, the <u>solution</u> to a system of linear equations is the point where the lines <u>intersect</u>.

Algebraically, we can:

- 1. isolate one variable in an equation.
- 2. substitute the isolated variable into the other equation.
- 3. solve for the single variable.
- 4. sub the answer from step 3 into the isolated equation from step 1 to find the other variable.

Basic 2D Grid.agg