Review - Part 3

Linear Relationships

Jan 31-2:27 PM

Evaluate (2x - 1) for

- a) x = 0
- b) x = 1
- c) x = 2

Each value of x will produce a different value for (2x - 1).

We can graph the relationship between x and (2x - 1) by letting y = 2x - 1.

Each pair (x, y) is a point on the x-y plane.

Feb 4-9:04 PM

A <u>linear relationship</u> occurs when both variables are <u>linear</u> (i.e., they have an exponent of 1).

For example,

(a)
$$y = 2 x - 1$$
 (b) $2 x - y - 1 = 0$ (c) $2 x - y = 1$

It is possible to graph a linear relationship using:

- (1) a table of values
- (2) the y-intercept and x-intercept
- (3) the y-intercept and the slope (m)

To graph a straight line, only **two points** are required (but a third point is a good check).

Using the intercepts:

The x-intercept is the **point** where the line crosses the _____.

The y-intercept is the **point** where the line crosses the _____.

$$2 x - y - 1 = 0$$

To find the x-int, set _____ | To find the y-int, set _____

Feb 4-9:18 PM

Feb 4-9:23 PM

Using the y-intercept and slope:

Recall:

$$m = slope = \frac{rise}{run} =$$

The y-int is our starting point, and we use the slope to find the next point.

A linear equation in slope-intercept form is

$$y = m x + b$$

Feb 4-9:24 PM

Feb 4-9:23 PM

Assigned work:

worksheet

Extra practice:

Extra practice:

A-6: p.468 # 1bd, 2abc, 3abcd, 4

A-7: p.470 # 1abc, 2ab, 3d, 4bc, 5bc, 6

Jan 31-2:39 PM

p. 1 #7.

$$y = 3x + 2$$
 $y = 3$
 $y = Mx + 5$ $y - int = 2$
 $7 - int = 3x + 2$
 $7 - 2 = 3x + 2$

Feb 5-12:44 PM

p. (#8
$$-5x + 2y = 6$$

$$2y = 5x + 6$$

$$y = \frac{5}{2}x + 3$$

$$y = \frac{5}{2}x + 3$$

$$y = \frac{5}{2}x + 3$$

$$x = \frac{6}{5}x + \frac{6}{5}x +$$

Feb 5-12:45 PM

