

- **1.** Determine the slope of the line that passes through each pair of points.
  - (a) (5, 2) and (-1, 8)
  - **(b)** (-8, 1) and (-9, 2)
  - (c) (3, 7) and (-5, -9)
  - (d) (-4, 0) and (4, 6)
- **2.** Write, in the form y = mx + b, the equation of the line that has
  - (a) a slope of 2 and a y-intercept of 8
  - **(b)** a slope of  $\frac{3}{4}$  and a *y*-intercept of -6
  - (c) a slope of 6 and passes through (1, 5)
  - (d) a slope of  $\frac{5}{6}$  and passes through (-12, 3)
- 3. Express each equation in standard form.
  - (a) 3x + y = 10
  - **(b)** -2x 2y 8 = 0
  - (c) 6x + 3y = 12
  - (d) 2x 3y = 5
  - (e)  $\frac{5}{2}x \frac{3}{4}y = \frac{1}{3}$
- 4. For each line in question 1
  - i. draw a diagram and determine the y-intercept
  - ii. determine the equation of the line in the form y = mx + b
  - iii. express the equation in standard form

- **5.** Are the lines with the given slopes parallel, perpendicular, or neither?
  - (a)  $m_1 = 5$ ,  $m_2 = \frac{1}{5}$
  - **(b)**  $m_1 = -3$ ,  $m_2 = \frac{1}{3}$
  - (c)  $m_1 = \frac{3}{4}$ ,  $m_2 = 0.75$
  - (d)  $m_1 = -0.6$ ,  $m_2 = \frac{3}{5}$
  - (e)  $m_1 = \frac{4}{7}$ ,  $m_2 = -1\frac{3}{4}$
- **6.** Write an equation for the line that is
  - (a) parallel to x = 3 and passes through (-4, 3)
  - **(b)** parallel to y = 2 and passes through (2, 5)
  - (c) perpendicular to x = -1 and passes through (-2, -3)
  - (d) perpendicular to y = 4 and passes through (1, 1)
  - (e) parallel to y = -2x + 3 and passes through (-2, 1)
  - (f) perpendicular to  $y = \frac{3}{2}x + 2$  and has a *y*-intercept of -2
  - (g) perpendicular to y = 3x + 4 and has the same y-intercept as the line y = 2x - 6















(b) 
$$y = 5$$
  
(d)  $x = 1$   
(f)  $y = \frac{-2}{3}x - 2$ 

(b) perpendicular(d) neither