L2 (1.4) Solving Linear Systems by Substitution

Given y = 2x + 3, what does it mean if:

- (a) x = -1 (b) y = 7 (c) y = x 1

solve graphically

Given y = 2x + 3, what does it mean if:

(a)
$$x = -1$$

(b) y = 7

Given y = 2x + 3, what does it mean if:

(c)
$$x = y + 1$$

desmos

solve graphically

Solving Linear Systems by Substitution Febro 2016

Graphically, the <u>solution</u> to a system of linear equations is the point(s) where the lines <u>intersect</u>.

Algebraically, we can:

- 1. isolate one variable in one equation.
- 2. substitute the isolated variable into the other equation.
- 3. solve for the single variable.
- 4. sub the answer from step 3 into the isolated equation from step 1 to find the other variable.

Ex.1. Solve y = 3x - 2 and x = y - 2

Sub the x-value from the second equation into the first equation

Feb 10-9:06 PM

Ex.1. Solve
$$y = 3x - 2$$
 and $x = y - 2$.
The solution is $(2, 4)$, or $x = 2$ and $y = 4$.

To perform a formal check of the solution, sub these values into each equation and compare sides.

$$y = 3x - 2$$

$$x = y - 2$$

Feb 10-9:06 PM

Feb 10-9:06 PM

Feb 10-9:16 PM

3 (b)
$$2x + 4y = 4$$
 (c) $3x - 16y = 6$ (d)

O for x

$$\frac{2x}{2} = -\frac{1}{4} + \frac{4}{2}$$

$$x = -\frac{1}{4} + 2$$
2 for y

$$x = -\frac{1}{3}y + 2$$
2 for y

$$-16y = -3x + 6$$

$$y = -3x + 6$$

$$y$$

Feb 11-12:41 PM

4(b)
$$6r + 3s = 9$$
, r

$$\frac{6r}{6} = \frac{-3s}{2k} + \frac{91^3}{k_2}$$

$$r = \frac{-1}{2}s + \frac{3}{2}$$

Feb 11-12:48 PM

Feb 11-12:53 PM

9f)
$$\frac{1}{4}x - 3y = \frac{1}{2}$$
 0 $\frac{1}{3}x - 9y = 5$ 2
 $0x4: x - 12y = 2$ 3
 $2x3: x - 27y = 15$ 4

$$0 \times 4: \times -12y = 2 \quad \boxed{3}$$

②×3:
$$\chi - 27y = 15$$
 ④

Feb 11-1:00 PM

Basic 2D Grid.agg