

Input & Output in Java
Using Text Files

Recall: Exception Handling

● when a program is asked to perform an action,
it generally assumes such an action is possible

● if a situation occurs where the action is not
possible, the program will throw an exception

● for example
– dividing by zero

– array index out of bounds

– reading from an empty buffer

– working with a file that does not exist

● an unhandled exception will crash a program

File Output
● FileWriter: open a named file for output

– if the file does not exist, create it

– if the file does exist, any data will be
overwritten

● PrintWriter: send output to an opened file

● once writing is complete, close the file

FileWriter fw = new FileWriter("dataFile.txt");

PrintWriter pw = new PrintWriter(fw);
pw.println("Hello");
pw.println("World");
pw.close();

File Output
● import Java input/output libraries
● enclose operation in try-catch in case of failure

import java.io.*;
class FileOutDemo
{
 public static void main(String[] args)
 {
 try
 {
 FileWriter fw = new FileWriter("dataFile.txt");
 PrintWriter pw = new PrintWriter(fw);
 pw.println("Hello"); // will appear on 1st line
 pw.println("World"); // will appear on 2nd line
 pw.close(); // close file for writing
 }
 catch(IOException e){}
 }
}

Input Stream from File

● start by creating a FileReader for the data file

// open a text file for reading
FileReader fr = new FileReader("dataFile.txt");

● like a keyboard, the text from a file creates a
stream of data (characters)

● these characters will be directed to a buffer in
system memory (RAM)

// direct contents of text file to buffer
BufferedReader br = new BufferedReader(fr);

Reading File Data as Strings

● all buffered data is initially a collection of
characters assembled into one string per line

● an empty line from the file will be interpreted as
the 'null' string, signaling the end of the data

FileReader fr = new FileReader("dataFile.txt");
BufferedReader br = new BufferedReader(fr);
String line;

line = br.readLine(); // read first line
while (line != null)
{
 System.out.println(line); // read next line
 line = br.readLine();
}
br.close();

import java.io.*;
class FileInDemo
{
 public static void main(String[] args)
 {
 try
 {
 FileReader fr = new FileReader("dataFile.txt");
 BufferedReader br = new BufferedReader(fr);
 String line;

 line = br.readLine(); // read first line
 while (line != null)
 {
 System.out.println(line); // read next line
 line = br.readLine();
 }
 br.close();
 }
 catch(IOException e){}
 }
}

Recall: Parsing Data

● once data has been temporarily stored in a
string, you may wish to store some data in a
more meaningful form (e.g., integers, doubles)

● use the same techniques as used for standard
input from the keyboard

● must include a "catch" in case a conversion
between string (from text file) and variable (e.g.,
integer) fails

import java.io.*;
class FileParseInputDemo
{
 public static void main(String[] args)
 {
 try
 {
 FileReader fr = new FileReader("dataFile.txt");
 BufferedReader br = new BufferedReader(fr);
 String line;

 line = br.readLine(); // read first line
 String name = line; // store name

 line = br.readLine();
 int age = Integer.parseInt(line); // store age

 line = br.readLine();
 double bankBal = Double.parseDouble(line); // store balance

 br.close();
 }
 catch(IOException e){
 System.out.println("Error Reading from File");
 }
 catch(NumberFormatException err) {
 System.out.println("Error Converting Number");
 }
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

