

Input & Output in Java

Standard I/O
Exception Handling

Java I/O: Generic & Complex

● Java runs on a huge
variety of plaforms

● to accomplish this, a
Java Virtual Machine
(JVM) is written for
every type of
hardware

● the JVM handles
details of I/O specific
to each system

● output examples
– monitor

– phone display

– audio/speaker

● input examples
– keyboard

– touchscreen

– file

– audio/voice

Standard Output

● for most systems, the JVM is configured to
allow for simple text output

● this is part of the standard Java package
– if you are writing a Java program, it should be

automatically available

class StandardOutputTest
{
 public static void main(String[] args)
 {
 System.out.println("Java standard output.");
 }
}

In.class for Simplified Input

● you may have been using the In.class for input
● contains several helper routines which hide the

complexity of Java input from programmer
● for different input (e.g., files) need to start to

use a more generic input method
class StandardOutputTest
{
 public static void main(String[] args)
 {
 String name;
 int age;
 name = In.getString();
 age = In.getInt();
 }
}

Input Stream

● our default input method will be the keyboard
● also the default for many systems (e.g., PCs)

– called System.in in most cases

– System.out is generally a text box on screen

– need to import standard input libraries

import java.io.*;
class StandardInputTest
{
 public static void main(String[] args)
 {
 InputStreamReader inStream = new InputStreamReader(System.in);
 }
}

Buffered Reader

● input data must be temporarily stored before
being passed along to its final destination

● a buffer is a section of RAM set aside for this
purpose

● it will hold all of the characters typed until the
enter key is pressed

import java.io.*;
class StandardInputTest
{
 public static void main(String[] args)
 {
 InputStreamReader inStream = new InputStreamReader(System.in);
 BufferedReader bufRead = new BufferedReader(inStream);
 }
}

Exception Handling

● when a program is asked to perform an action,
it generally assumes such an action is possible

● if a situation occurs where the action is not
possible, the program will throw an exception

● for example
– dividing by zero

– array index out of bounds

– reading from an empty buffer

● an unhandled exception will crash a program

try-catch Block

● when the failure of an action is outside of our
control, we must include a try-catch block,
looking for an IOException

– some can be detected using code, and so are
optional (e.g., divide by zero, if x == 0 ...)

InputStreamReader inStream = new InputStreamReader(System.in);
BufferedReader bufRead = new BufferedReader(inStream);

try
{
 String firstName = bufRead.readLine();
}
catch (IOException err)
{
 System.out.println("Error reading line");
}

Parsing Data

● all buffered data is initially a collection of
characters assembled into one string per line

● to extract different data types, it is necessary to
parse the string for the desired data

System.out.println("Please Enter The Year You Were Born: ");
String yearString = bufRead.readLine();

System.out.println("Please Enter Your Bank Balance: ");
String balanceString = bufRead.readLine();

int year = Integer.parseInt(yearString);
double balance = Double.parseDouble(balanceString);

Parsing Data requires try-catch

● the buffered reader may receive invalid data
● the parsing routines use the buffered reader
● therefore, the parsing activity may also be

invalid, and requires a try-catch

try {
 System.out.println("Please Enter The Year You Were Born: ");
 String yearString = bufRead.readLine();
 int year = Integer.parseInt(yearString);
}
catch(NumberFormatException err) {
 System.out.println("Error Converting Number");
}

import java.io.*;
class StandardInputTest
{
 public static void main(String[] args)
 {
 InputStreamReader inStream = new InputStreamReader(System.in);
 BufferedReader bufRead = new BufferedReader(inStream);

 try
 {
 System.out.println("Please Enter Your First Name: ");
 String firstName = bufRead.readLine();

 System.out.println("Please Enter The Year You Were Born: ");
 String yearString = bufRead.readLine();

 System.out.println("Please Enter Your Bank Balance: ");
 String balanceString = bufRead.readLine();

 int year = Integer.parseInt(yearString);
 double balance = Double.parseDouble(balanceString);
 }
 catch (IOException err)
 {
 System.out.println("Error reading line");
 }
 catch(NumberFormatException err) {
 System.out.println("Error Converting Number");
 }
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

