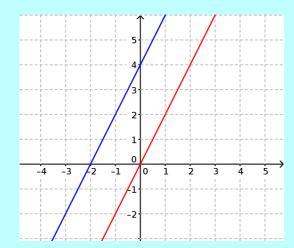
Assigned Work: p. 59 # 1, 2a, 3abcfh, 4, 6*

Distinct or Coincident Lines (1.7)

Remember the linear systems that we solved by graphing in our first lesson?


a)
$$y = 2x + 4$$
 b) $y = 2x + 4$ c) $y = x - 3$
 $y = 2x$ $y = -x + 4$ $4x - 4y = 12$

b)
$$y = 2x + 4$$

c)
$$y = x - 3$$

 $4x - 4y = 12$

Feb 14 - 3:29 PM

a)
$$y = 2x + 4$$

 $y = 2x$

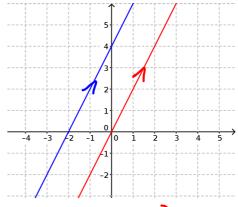
These lines are parallel and distinct. There is no solution to the system.

What would happen when you tried solve this system algebraically?

Assigned Work: p. 59 # 1, 2a, 3abcfh, 4, 6*

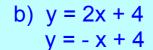
Distinct or Coincident Lines (1.7)

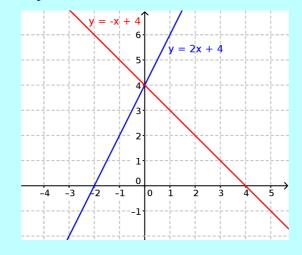
Feb 17/2016


Solve the following linear system using an algebraic method.

$$y = 2x + 4$$

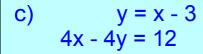
$$y = 2x$$


$$2$$


2 0 = 4 not possible ... no solution

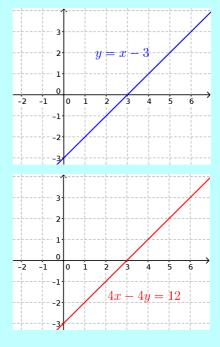
hwer cross

Feb 11-7:25 AM

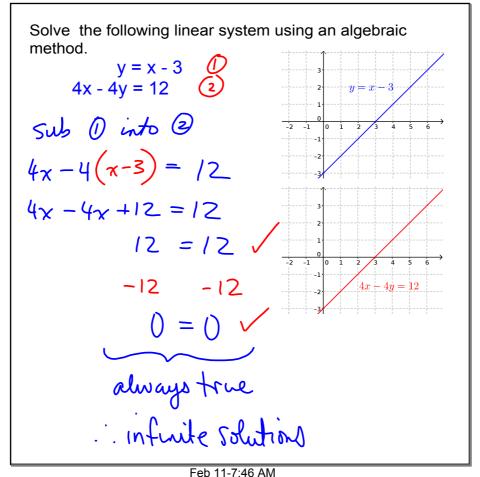

These lines are not parallel. There is one solution to the system.

What would happen when you solve this system algebraically?

Solve the following linear system using an algebraic method.


$$y = 2x + 4$$
$$y = -x + 4$$

Feb 11-7:44 AM



These lines are the same (coincident).

There are **infinitely many** solutions to the system.

What would happen when you try to solve this system algebraically?

Feb 11-7:46 AN

When solving a linear system algebraically:

Exactly One Solution (different slopes)

- you can find the value of one of the variables and then solve for the other.

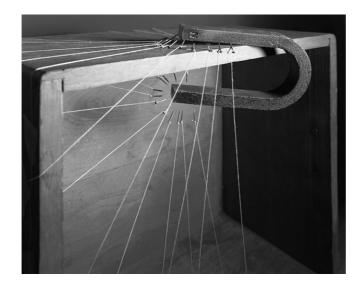
No Solution (parallel lines)

- you end up with an untrue statement.e.g. 0x = 2 is never true
- these lines are distinct.

Infinitely Many Solutions (same lines)

- you end up with a statement which is true for any value of x.
- -0x = 0 is always true
- these lines are coincident.

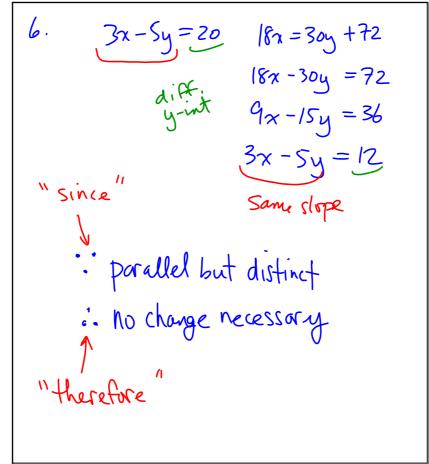
Assigned Work: p. 59 # 1, 2a, 3abcfh, 4, 6*


Ex.1 Write a linear system with:

- a) infinitely many solutions
- b) no solution

State why it satisfies the condition and then solve the system.

Feb 14 - 3:29 PM


Assigned Work: p. 59 # 1,(2a) 3abcfh, 4,(6*)

2(a)
$$3x + 4y = 2$$

(i) no solution slope Same (parallel) diff yint $y = mx + b$
 $3x + 4y = 2$
 $4y = -3x + 2$
 $4y = -\frac{3}{4}x + \frac{1}{2}x$
 $4x = -\frac{3}{4}x +$

Feb 18-12:35 PM

3(b)
$$y = 4x - 30$$
 distinct
 $y = 4x - 76$ no solution
 $0 - 20 - 0 + 4 - 3 - (-7)$
 $0 = 4 = -3 + 7$
 $= 4$
(f) $3x - 5y - 2 = 00$ Isolution
 $4x + 5y + 2 = 06$ Isolution
 $0 + 20 + 20 = 0$
 $7x = 0$

