Modelling with Linear Equations

Feb 18/2016

The purpose of today's lesson is to create a <u>system of linear equations</u> from a word problem.

- 1. Identify unknowns and declare them as variables. This may involve some trial and error.
- 2. Write at least two equations using the variables.
- 3. Solve using the method of your choice. Some choices are better than others, so choose carefully.
- 4. Write a concluding statement that answers the original question from the word problem.

Feb 18-10:58 PM

Modelling with Linear Equations

add

Write a system of equations to model each of the following situations (do not solve):

1. The sum of two numbers is 72. Their difference is 48. Find the numbers.

Let x and y represent the two numbers.

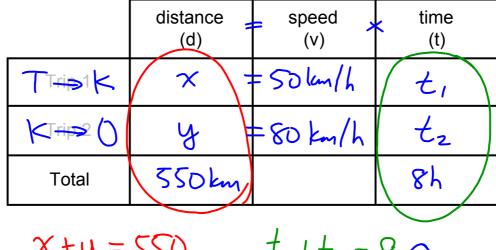
$$x + y = 72$$
 (1)
 $x - y = 46$ (2)

2. Bert earns an hourly wage plus tips. One week he worked 12h and made a total of \$117. The next week he worked 10h and earned the same amount in tips as the week before, for a total of \$110. What is Bert's hourly wage?

$$12w + y = 117$$

 $10w + y = 110$
 $w = howly rate$
 $y = +i\infty$.

Feb 18-10:59 PM


3. Ernie drove at a speed of 50 km/h from Toronto to Kingston. From Kingston to Ottawa, he drove 80 km/h. If the whole trip was 550 km and it took 8h, what is the distance from Ottawa to Kingston?

$$V = \frac{d}{t} \frac{km}{h}$$

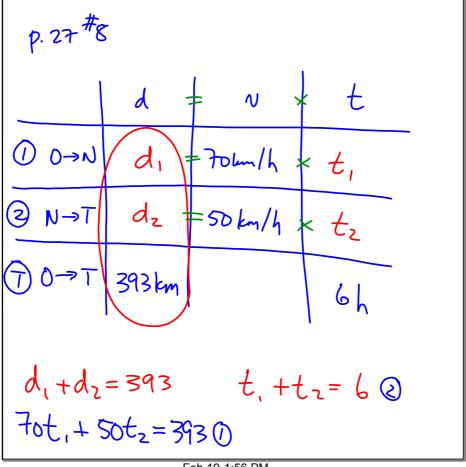
$$t \times v = \frac{d}{t} \times t$$

$$v = d$$
 $d = nt$

3. Ernie drove at a speed of 50 km/h from Toronto to Kingston. From Kingston to Ottawa, he drove 80 km/h. If the whole trip was 550 km and it took 8h, what is the distance from Ottawa to Kingston?

$$50t_1 + 80t_2 = 550$$
 $t_1 + t_2 = 80$

Feb 18-11:01 PM


4. One lawn fertilizer is 24% nitrogen, and another is 12% nitrogen. How much of each fertilizer should be mixed to obtain 100kg of fertilizer that is 21% nitrogen?

Assigned Work:

write a system of equations for each of the following, but DO NOT SOLVE:

Reading examples 1 & 2 p.33-35 will help.

Feb 16 - 2:27 PM

Feb 19-1:56 PM

p. 39. 11, 14, 15

11.
$$30g$$
 $70%$ purity

 $30(0.70) = 21$
 $x + y = 30$ $0.8x + 0.66y = 0.70(30)$

Let x be the mass of 80% compand
Let y be the mass of 66% compand.

Feb 19-2:02 PM

14.
$$6.005x + 0.14y = 50$$
 (carbs)

 $0.030x + 0.030y = 20$ (protein)

Let x rsp. mass of soy milk Let y rsp. mass of veg.

15. Let P rep. pay per week

Let
$$t$$
 rep total sales

$$P = 500 + 0.05t \quad 0$$

$$5\% = \frac{5}{100}$$

$$P = 400 + 0.075t \quad 2$$

$$7.5\% = \frac{7.5}{100}$$

Feb 19-2:15 PM

p.55 #8.

Let
$$x$$
 rep. Lori's distance

Let y rep. Midwas' distance

 $x+y=72.7 \ 0 \ x=y+8.9$

or

 $x-y=8.9$

Feb 19-2:22 PM