Applications of Linear Systems: dvt Problems

Some strategies:

- 1. Identify what the question wants. This may tell you one or both of your variables.
- 2. Remember (a) d = vt or (b)

- 3. Use a table to fill in known and unknown values to help form your equations.
- 4. Make sure your units are all consistent.

Feb 19-9:38 PM

Ex.2 Emily travelled 95 km from Oakville to Oshawa by car and GO train. The car averaged 60 km/h, and the train averaged 90 km/h. The whole trip took 1.5 hours. How long was she in the car?

	distance (d)	speed (v)	time (t)
<u> </u>	d,	bokn/h	tı
G102	dz	90 km/h	tz
Total	95km		1.5h

Feb 19-9:38 PM

Ex.3 A boat took 2 h to travel 24 km down a river with the current and 3 h to make the return trip against the current. Find the speed of the boat in still water and the speed of the current.

	distance (d)	speed (v)	time (t)
down	24 km =	= x+y >	2 h
THIP 2	24 lcm =	=x-y >	3 4
Total	48km		sh

p.27 # 8

p.27#8
p.55#13
p.64#7

Let y be the speed of boat 24 = (x+y)(z) 24 = (x-y)(3) 24 = 2x + 2y = 0 24 = 3x - 3y = 0

Feb 19-9:46 PM

Feb 17 - 10:58 AM

Feb 22-2:04 PM

Feb 22-2:09 PM