

Objects in Java

Basic Concepts

● what is a class?
● defining classes
● creating objects

The Class definition is like a
blueprint or design or specification

● here we specify the
properties and
actions of our class

● properties
– name
– breed

● actions
– bark
– wag tail

Create objects using class design

Create objects using class design
File: Dog.java

class Dog
{

String name;
int age;
String breed;
int tailPosition = 0;

void bark()
{

println("woof!");
}

void wagTail()
{

tailPosition = -5;
delay(1); // 1 second
tailPosition = +5;
delay(1); // 1 second
tailPosition = 0;

}
}

File: DogPark.java

public static void main(...)
{
 // create some dog objects
 Dog dog1 =

new Dog("Fido", "Lab");

 Dog dog2 =
new Dog("Rex", "Boxer");

 Dog dog3 =
new Dog("Buddy", "Spaniel");

dog1.bark();

dog2.wagTail();

dog3.bark();
dog3.wagTail();

}

Defining a Class

● define a class in a
separate file with the
same name as the
class

– Person.java
● define fields to hold

data, or properties, of
the class

– name, age

class Person

{

 String name;

 int age;

}

Using a Class to Create Objects
● a class is just an idea
● an object is that idea

made into something
"real"

● create and use
objects in a separate
file from the class

– TestPerson.java
● the "new" keyword

asks for space in
memory for object

// a regular old variable
int count = 0;

// more complex variables
String msg = "Hello";

double[] grades =
 new double[4];

// create a new person
Person p1 = new Person();

Object Data Fields

● data fields contain the
properties of
individual objects

● each object will have
its own copies of its
own data

● data fields can store
basic data types,
arrays, or even other
objects

// create a new person
Person p1 = new Person();
Person p2 = new Person();

p1.name = "Arthur Dent";
p1.age = 44;

p2.name = "Ford Prefect";
p2.age = 32;

println(p1.name);
// output is "Arthur Dent"

println(p2.age);
// output is 32

What is an Object

● the simplest version
is like a complex
variable

● holds multiple pieces
of data

● data can be different
types

– int, double,
boolean, char,
String

● this type of data
structure is
sometimes called a
record

● data for a Person
might include:

– name (String)
– age (int)
– married

(boolean)

Source Code: Person Class

// file2: TestPerson.java

class TestPerson
{
 public static void main(String[] args)
 {
 int x;
 double y;

 Person p = new Person();

 p.name = "Fred";
 p.age = 25;
 p.isMarried = false;
 }
}

// file1: Person.java

class Person
{
 String name;
 int age;
 boolean isMarried;
}

Source Code: Person Class

// file1: Person.java

class Person
{
 String name;
 int age;
 boolean isMarried;
}

● the class (or record)
is defined in its own
file

● each part of the
record is then defined
within the class

Source Code: Person Class

// file2: TestPerson.java

class TestPerson
{
 public static void main...
 {
 int x;
 double y;

 Person p = new Person();

 p.name = "Fred";
 p.age = 25;
 p.isMarried = false;
 }
}

● to use the record,
make an object which
has the properties of
the class definition

● create a variable to
identify the object

● use the "new"
keyword to create the
object in RAM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

