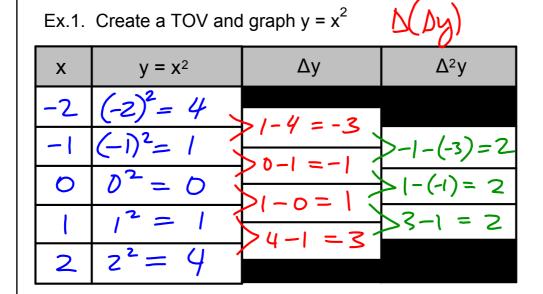
Intro to Quadratic Relations March 21/2016	
So far: Linear Relations	New: Quadratic Relations
Equation: y = mx + b	Equation: $y = ax^2 + bx + c$
m is slope, b is y-intercept	a, b, and c are coefficients
highest exponent of x is 1	highest exponent of x is 2 (degree, or order, of 2)

Mar 20 - 4:17 PM

Intro to Quadratic Relations		
So far: Linear Relations	New: Quadratic Relations	
Equation: y = mx + b	Equation: $y = ax^2 + bx + c$	
m is slope, b is y-intercept highest exponent of x is 1	a, b, and c are <u>coefficients</u> highest exponent of x is 2 (degree, or order, of 2)	
Mor 20 4:17 PM		

Recall: To graph a relationship, we can use a <u>table of values</u> (or TOV).

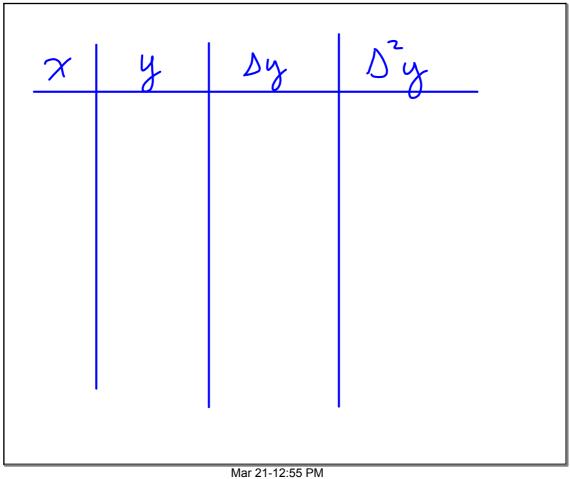
- 1. Pick some values for x.
- 2. Sub each x-value into the equation.
- 3. Determine values for y.
- 4. Plot each point (x, y) on the x-y plane.
- 5. (Optional) Calculate <u>first differences</u>, which are the differences between *consecutive* y-values for *consecutive* x-values.

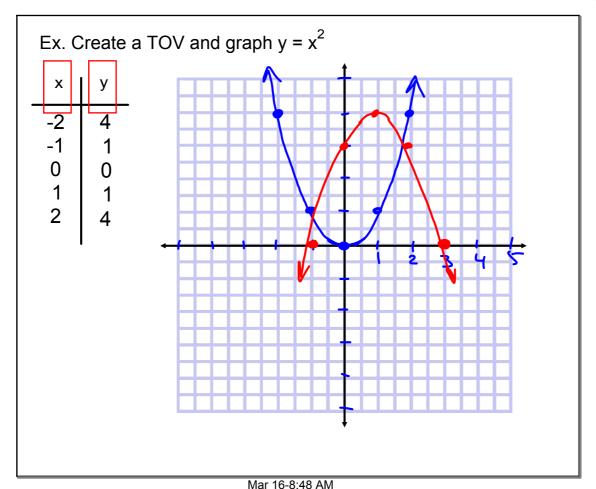

Apr 14-7:45 PM

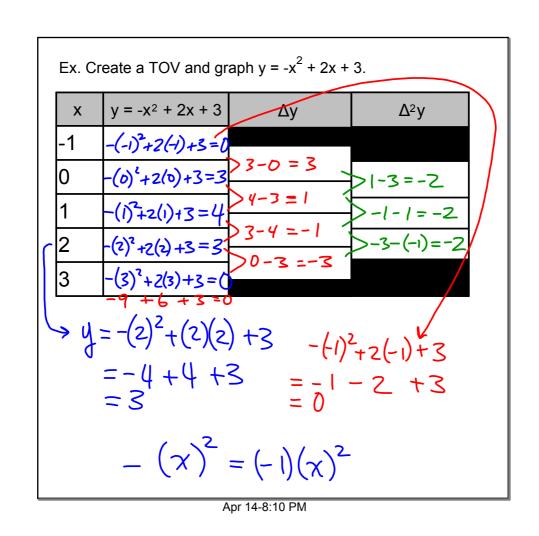
Create a TOV for y = 2x + 1

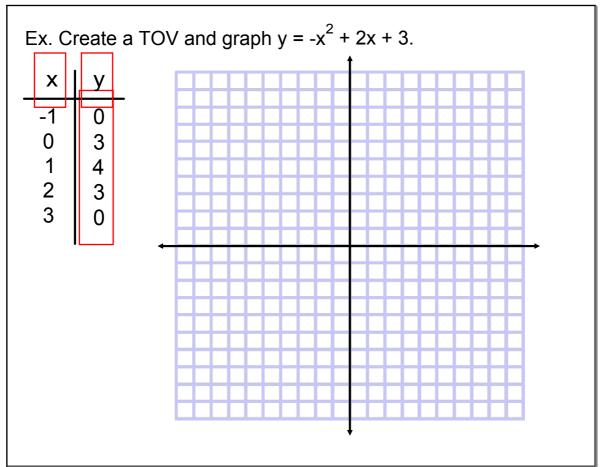
Х	y = 2x + 1	$\Delta y = y_2 - y_1$
0	2(0)+1=1	>3-1 = 2
١	2(1)+1=3	75-1 - Z
2	5()7-5=2
3	7	9-2-2
4	9-	111-6

' Δ ' (delta) means "change in" or "difference". Δ y is the change in y, or the <u>first difference</u>.


In a linear relationship, the first differences are constant




 Δ^2 y is the change in Δ y, or change in 1st differences. Δ^2 y is the <u>second difference</u>.


In a quadratic relationship, first differences are and second differences are ______.

Apr 14-8:00 PM

Mar 16-8:48 AM

For any parabola, $y = ax^2 + bx + c$, the direction of opening can be determined from:

- the graph
- the sign of the 2nd difference
- the sign of "a"

Positive "a" value
Positive 2nd difference
parabola opens

Positive "a" value

Negative "a" value \longrightarrow parabola opens \longrightarrow Down.

Assigned Work:

p. 137 # 1, 2, 3, 4, 5ab, 6, 7

Assigned Work:

3. (ii)
$$y = x^2 - 6x + 4$$

2. degree 2

3. (ii)
$$y = x^2 - 6x + 4$$

2. degree 2

for y-int, set $x = 0$
 $y = (0)^2 - 6(0) + 4$
 $y = 4$
 $y = 2x - 3$

$$y = 2x - 3$$

Nov 1-8:01 AM