Intro to Quadratic Relations March 21/2016		
So far: Linear Relations	New: Quadratic Relations	
Equation: $y = mx' + b$	Equation: $y = ax^2 + bx' + c$	
m is slope, b is y-intercept	a, b, and c are coefficients	
highest exponent of x is 1	highest exponent of x is 2 (degree, or order, of 2)	

Mar 20 - 4:17 PM

Intro to Quadratic Relations				
So far: Linear Relations	New: Quadratic Relations			
Equation: y = mx + b	Equation: $y = ax^2 + bx + c$			
m is slope, b is y-intercept highest exponent of x is 1	a, b, and c are <u>coefficients</u> highest exponent of x is 2 (degree, or order, of 2)			
Mar 20 4:17 PM				

Recall: To graph a relationship, we can use a <u>table of values</u> (or TOV).

- 1. Pick some values for x.
- 2. Sub each x-value into the equation.
- 3. Determine values for y.
- 4. Plot each point (x, y) on the x-y plane.
- 5. (Optional) Calculate <u>first differences</u>, which are the differences between *consecutive* y-values for *consecutive* x-values.

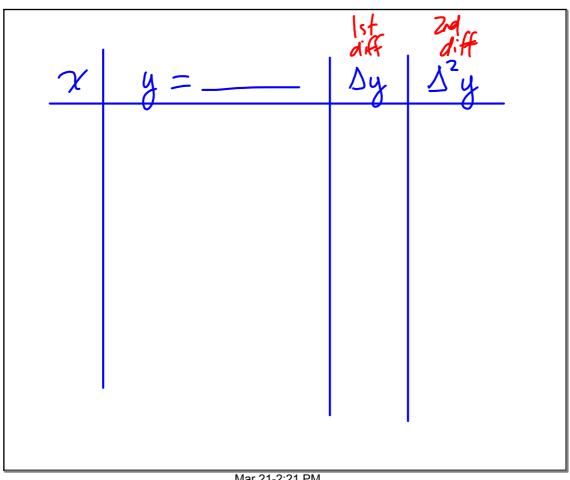
Apr 14-7:45 PM

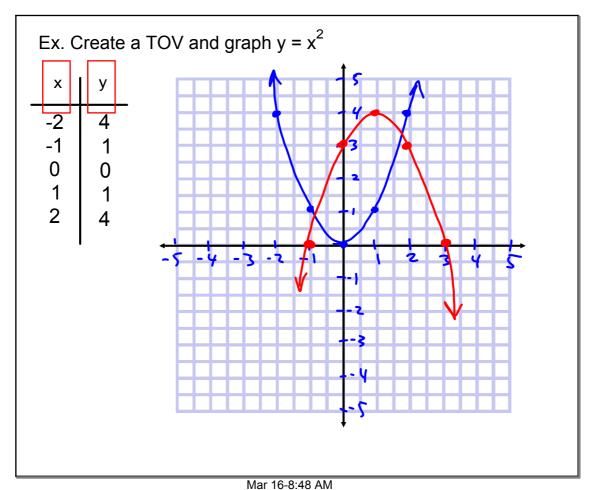
Create a TOV for y = 2x + 1

	Х	y = 2x + 1	$\Delta y = y_2 - y_1$
	0	2(0)+1=/	
	>1	2(1)+1=3	>3-1=2 >T-7=2
	, 2	2(2)+1=5(73 3 - Z Na - C = D
	>3	7	S9-7=2
/	- 4	91	

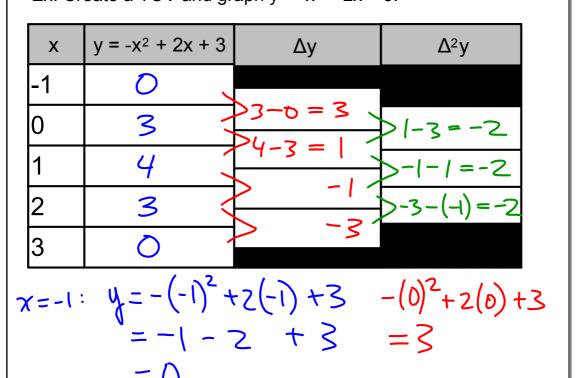
' Δ ' (delta) means "change in" or "difference". Δ y is the change in y, or the <u>first difference</u>.

In a linear relationship, the first differences are CONSTANT.

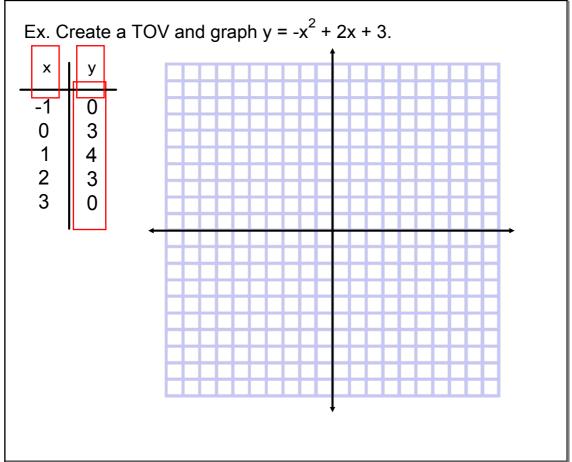

Ex.1. Create a TOV and graph $y = x^2$


Х	y = x ²	Δу	Δ^2 y
-2	$(-2)^2 = 4$	N-11 2	
-1	$(-1)^2 = 1$	> 0 - 1 = - 1	>-1-(-3)=2
D	$D^2 = D$		>1-(-1)=2
١	12 = 1	\u-1=2	>3-1 = 2
2	$2^2 = 4^{\prime}$		

 Δ^2 y is the change in Δ y, or change in 1st differences. Δ^2 y is the <u>second difference</u>.


In a quadratic relationship, first differences are and second differences are ______.

Apr 14-8:00 PM



Ex. Create a TOV and graph $y = -x^2 + 2x + 3$.

Apr 14-8:10 PM

Mar 16-8:48 AM

For any parabola, $y = ax^2 + bx + c$, the direction of opening can be determined from:

- the graph
- the sign of the 2nd difference
- the sign of "a"

Positive "a" value
Positive 2nd difference
parabola opens

Positive "a" value

Negative "a" value
Negative 2nd difference

parabola opens

Assigned Work:

p. 137 # 1, 2, 3, 4, 5ab, 6, 7

Assigned Work:

try
$$a=0$$
: $y=(0)x^2+bx+c$
 $y=0+bx+c$
 $y=bx+c$

Nov 1-8:01 AM

$$y' = \frac{2x^{2} + 5x - 3}{2}$$

$$y = \frac{3x + 2}{1}$$

$$y = \frac{3}{1}$$

$$y' = \frac{3}{1}$$

$$y'' = \frac{3}{1}$$

$$y'' = \frac{3}{1}$$

$$xy = \frac{3}{1}$$

$$xy = \frac{3}{1}$$

$$xy = \frac{3}{1}$$