Solving Problems Using Quadratic Relations

What we have learned that we will be using:

x-intercepts zeroes solutions

- factoring and the quadratic formula leads to the roots
- finding the <u>vertex</u> (by factoring, partial factoring, or completing the square) gives you the <u>optimal value</u> (i.e., the <u>maximum</u> or <u>minimum</u>)

Remember that in word problems it is always important to identify the variables and sketching the parabola can be useful.

Apr 25-2:44 PM

Solving Problems Using Quadratic Relations

Ex.1 A hose is placed on an aerial ladder. The hose sprays water on a forest fire. The height of the water, *h*, in metres can be modelled by the relation

$$h = -2.25(d - 1)^2 + 9,$$

where *d* is the horizontal distance, in metres, of the water from the nozzle of the hose.

a) What is the maximum height reached by the water?

... the max. height is 9 m.

At what horizontal distance from the nozzle is the maximum height reached?

: max height occurs 1 m (horizontally) from ladder.

Apr 28-2:23 PM

Ex.1 A hose is placed on an aerial ladder. The hose sprays water on a forest fire. The height of the water, h, in metres can be modelled by the relation

$$h = -2.25(d - 1)^2 + 9,$$

where *d* is the horizontal distance, in metres, of the water from the nozzle of the hose.

c) What is the height of the aerial ladder? y-ixtset d=0: $h=-2.25(v-1)^2+9$ d=0 =-2.25(1)+9=6.75

.. the ladder is 6.75m high.

d) How high is the water when it is at a horizontal distance of 2m from the nozzle?

sot
$$d=2: h=-2.25(2-1)^2+9$$

=-2.25(1)+9
=6.75

Ex.2 A ball is thrown into the air. Its height, in metres, after *t* seconds, is $h = -4.9t^2 + 39.2t + 1.75$.

- a) When does it reach maximum height? $h = -4.9t^2 + 39.2t + 1.75$ $h = -4.9[t^2 8t] + 1.75$ h =
 - b) What is the maximum height?

i max. height is 80.15m.

Apr 22-9:25 PM

Ex.2 A ball is thrown into the air. Its height, in metres, after t seconds, is $h = -4.9t^2 + 39.2t + 1.75$.

c) From what height is the ball released?

.: the ball is released from 1.75 m. initial height t=0

d) When does the ball hit the ground?

七=?

$$\gamma = 0$$

0 = -4.9t² +39.2t +1.75 Solve using quadratic formula Ex.3 The size of a television screen or computer monitor is usually stated as the length of the diagonal. A screen has a 38-cm diagonal. The width of the screen is 6 cm more than the height. Find the dimensions of the screen to the nearest tenth.

Nov 29-9:17 PM

S.
$$V(\frac{x}{28}, 1024)$$
 $P(10, -4160)$
 $y = a(x-h)^2 + k$
 $P = \frac{a}{5}(x-28)^2 + 1024$
Sub $(10, -4160)$, solve for a.
(b) break even, $P = 0$
Set $P = 0$, solve for x .

Apr 29-12:44 PM

A =
$$l\omega$$

A = $l\omega$
 $dl + 2\omega = 30$
 $dl + 2\omega$

Apr 29-12:51 PM