
Object Interaction in Java – Inheritance & Methods

For any class of objects we define, Java automatically provides a toString method for that class.
Although we did not previously discuss how this was accomplished, it can now be explained in the
context of inheritance. All classes inherit from the Object class, and that includes methods such as
toString. Similarly, all classes can use the equals method, which is also defined in the Object
class.

Recall that the default toString method (from the Object class) returned a string containing the
identifier of the class and a reference to the object location in memory. This is not particularly useful in
most situations, but we can override this default behaviour with a custom definition, a task we
undertook with the Fraction class.

The toString method for the Fraction class was written to return the numerator and denominator
of the fraction. We also performed an override of the equals method, where two Fraction objects
were equal if their reduced values were equal.

A Fraction Object

Object

toString()

equals(Object o)

Fraction

toString()

equals(Fraction f)

Note that both of these methods are instance methods. When a call is made to an instance method,
Java looks for a method with the appropriate signature starting with the current class, and then
working upward in the hierarchy of the object.

Example 1 – If we were to write

Fraction f = new Fraction (2, 3);
f.toString();

we would invoke the toString method of the Fraction class. If, on the other hand, we had not
written a toString method for the Fraction class, this call would search upwards through the
hierarchy, looking for a toString method with the same signature. It would find, and use, the default
toString method defined in the Object superclass.

12. Nov. 2010 Page 1 of 1

